量子光学学报, 2017, 23 (4): 333, 网络出版: 2017-12-25  

级联倍频过程中谐波场量子噪声压缩的增强

Squeezing Enhancement of the Harmonic Fields by a Cascade Doubling Frequency Process
作者单位
1 山西大学 物理电子工程学院,山西 太原 030006
2 山西大学 光电研究所,量子光学与光量子器件国家重点实验室,山西 太原 030006
摘要
压缩态光场是连续变量量子信息科学研究的重要资源。本文提出了一种利用级联的单共振倍频系统提高压缩度的方案,研究表明两次倍频分别产生的二次谐波与四次谐波场为压缩态光场,且四次谐波场的压缩度比二次谐波场提高了大约3 dB。我们还研究了两个谐波场的压缩度随泵浦场衰减率、泵浦功率的变化关系。该系统不仅可以增强压缩态光场的压缩度,而且能将压缩光拓展到更短的波长区域。此外,通过对波长1 014.8 nm的基频光进行四倍频获得与汞原子吸收线波长相对应的压缩光场,对量子存储、光谱测量和光频标具有实用价值。
Abstract
Squeezed light field is an important resource for the Continuous Variable quantum information science. In this paper, we propose a scheme of improving the squeezing level by a single resonance cascaded frequency doubling system. The results show that the second and fourth harmonic fields generated from the frequency doubling process are both squeezed states, and the squeezing of the fourth harmonic field is higher than the second harmonic field by about 3 dB. We also investigate the relation of the squeezing of the two harmonic fields relying on the decay rate of the pump field. This kind of system not only can obtain a higher squeezing level,but also can expand the squeezed band to a shorter wavelength. In addition, one can obtain a squeezed field of the mercury absorption line by fourth frequency doubling processes of a light field with wavelength 1 014.8 nm, and it may be practical valuable to quantum storage, spectral measurement, and optical frequency standard.
参考文献

[1] Goda K,Miyakawa O,Mikhailov E E,et al.A Quantum-enhanced Prototype Gravitational-wave Detector[J].Nature Physics,2008,4:472-476.DOI:https:∥doi. org/10.1038/nphys920.

[2] Vittorio Giovannetti,Seth Lloyd,Lorenzo Maccone.Quantum-Enhanced Measurements:Beating the Standard Quantum Limit[J].Science,2004,306: 1300-1336.DOI:http:∥doi.org/10.1126/Science.1104149.

[3] Jurgen Appel,Eden Figueroa,Dmitry Korystov,et al.Quantum Memory for Squeezed Light[J].Phys Rev Lett,2008,100: 093602.DOI:http:∥doi.org/10.1103/PhysRevLett.100.093602.

[4] 彭堃墀,贾晓军,苏晓龙,等.连续变量量子态的光学操控[J].光学学报,2011,31:0900107.DOI:http:∥doi.org/10.3788/AOS201131.0900107.

[5] Lance A M,Symul T,Bowen W P,et al.Tripartite Quantum State Sharing[J].Phys Rev Lett,2004,92:177903.DOI:http:∥doi.org/10.1103/PhysRevLett.92.177903.

[6] Hoi-Kwong Lo,Xiongfeng Ma,Kai Chen.Decoy State Quantum Key Distribution[J].Phys Rev Lett,2005,94:230524.DOI:http:∥doi.org/10.1103/PhysRevLett.94.230504.

[7] Furusawa A,Serensen J L,Braunstein S L,et al.Unconditional Quantum Teleportation[J].Science,1998,282:706-709.DOI:http:∥doi.org/10.1126/science.282.5389.706.

[8] 翟泽辉,李永明,王少凯,等.连续变量量子离物传态的实验研究[J].物理学报,2005,54:2710-2716.DOI: http:∥doi.org/10.3321/j.issn:1000-3290.2005.06.045.

[9] Moskal S,Bednarek S,Adamowski J.Controlled Exchange Interaction for Quantum Logic Operations with Spin Qubits in Coupled Quantum Dots[J].Phys Rev A,2007,76:032302.DOI:http:∥doi.org/10. 1103/PhysRevA. 76.032302.

[10] Tobias Schmitt-Manderbach,Henning Weier,Martin Furst,et al.Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km[J].Phys Rev Lett,2007,98: 010504.DOI:http:∥doi.org/10. 1103/PhysRevLett. 98. 010504.

[11] Jing Jietai,Zhang Jing,Yan Ying,et al.Experimental Demonstration of Tripartite Entanglement and Controlled Dense Coding for Continuous Variables[J].Phys Rev Lett,2003,90:167903.DOI:https:∥doi. org/10. 1103/PhysRevLett. 90. 167903.

[12] Hyuk-jae Lee,Doyeol Ahn,Sung Woo Hwang.Dense Coding in Entangled States[J].Phys Rev A,2002,66:024304.DOI:http:∥doi.org/10. 1103/PhysRevA. 66. 024304.

[13] Wu L A,Kimble H J,Hall J H,et al.Generation of Squeezed States by Parametric Down Conversion[J].Phys Rev Lett,1986,57:2520-2523.DOI:http:∥doi.org/10. 1103/PhysRevLett. 57. 2520.

[14] Peng K C,Pan Q,Wang H,et al.Generation of Two-mode Quadrature-phase Squeezing and Intensity-difference Squeezing from a Cw-NOPO[J].Appl Phys B,1998,66:755-758.DOI:http:∥doi.org/10.1007/s003400050.

[15] Breitenbach G,Muler T,Pereira S F,et al.Squeezed Vacuum from a Monolithic Optical Parametric Oscillator[J].J Opt Soc Am B,1995,12:2304-2309.DOI:http:∥doi.org/10.1364/JOSAB.12.002304.

[16] Lam P K,Ralph T C,Buchler B C,et al.Optimization and Transfer of Vacuum Squeezing from an Optical Parametric Oscillator[J].J Opt B:Quan Semiclass Opt,1999,1:469-474.DOI:http:∥doi.org/10.1088/1464-4266/1/4/319.

[17] Mehmet M,Ast S,Eberle T,et al.Detection of 15 dB Squeezed States of Light and Their Application for the Absolute Calibration of Photoelectric Quantum Efficiency[J].Phys Rev Lett,2016,117:110801.DOI:http:∥doi.org/10.1103/PhysRevLett.117.110801.

[18] Pereira S F,Xiao M,Kimble H J,et al.Generation of Squeezed Light by Intracavity Frequency Doubling[J].Phys Rev A,1988,38:4931-4934.DOI:http:∥doi.org/10.1103/PhysRevA.38.4931.

[19] Paschotta R,Collett M,Kürz P,et al.Bright Squeezed Light from a Singly Resonant Frequency Doubler[J].Phys Rev Lett,1994,72:3807-3810.DOI: http:∥doi.org/10.1103/PhysRevLett.72.3807.

[20] 张宽收,张靖,谢常德,等.利用二次谐波过程产生532 nm强度压缩光的实验研究[J].物理学报,2000,49:80-84.DOI:http:∥doi.org/10.3321/j.issn:1000-3290.2000.01.017.

[21] Andersen U L,Buchhave P.Green Bright Squeezed Light from a Cwperiodically Poled KTP Second Harmonic Generator[J].Opt Express,2002,10:887-892.DOI:http:∥doi.org/10.1364/OE.10.000887.

[22] Lawrence M J,Byer R L,Fejer M M,et al.Squeezed Singly Resonant Second-harmonic Generation in Periodically Poledlithium Niobate[J].J Opt Soc Am B,2002,19:1592-1598.DOI:http:∥doi.org/10.1364/JOSAB.19.001592.

[23] Collett M J,Gardiner C W.Squeezing of Intracavity and Traveling-wave Light Fields Produced in Parametric Amplification[J].Phys Rev A,1984,30,1386.DOI:http:∥doi.org/10.1103/PhysRevA.30.1386.

张静, 王艳芳, 李妮, 杨荣国. 级联倍频过程中谐波场量子噪声压缩的增强[J]. 量子光学学报, 2017, 23(4): 333. ZHANG Jing, WANG Yanfang, LI Ni, YANG Rongguo. Squeezing Enhancement of the Harmonic Fields by a Cascade Doubling Frequency Process[J]. Acta Sinica Quantum Optica, 2017, 23(4): 333.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!