光学学报, 2014, 34 (9): 0901002, 网络出版: 2014-08-12   

氧气吸收被动测距技术中的折射吸收误差

Refraction Absorption Error of Passive Ranging Technology Based on Oxygen Absorption
作者单位
1 军械工程学院电子与光学工程系, 河北 石家庄 050003
2 中国人民解放军66267部队, 河北 石家庄 050003
摘要
大气层中气体浓度随海拔高度的指数衰减造成了大气折射率的不均匀分布。目标辐射在大气层中传播时,其辐射路径因折射作用变为曲线,而在求解目标距离时却是沿视在路径计算氧气吸收率,这使得氧气吸收被动测距中存在一个固有误差项,这里称之为折射吸收误差。为了分析折射吸收误差对氧气吸收被动测距的影响,分别计算目标辐射路径和视在路径的氧气浓度,并通过辐射路径和视在路径上吸收气体含量相等的方法,建立了不同视在天顶角的折射吸收误差和目标真实距离的关系。结果表明:相同天顶角下,折射吸收误差随路径长度增加而变大。天顶角小于90°时,折射吸收误差变化规律复杂,但能满足100 km以内的高精度近程测距和150 km以上的远程告警;天顶角大于90°时,折射吸收误差的变化规律简单且误差值很小,可实现全程高精度测距。因此该结论可为氧气吸收被动测距技术的误差修正提供一定的理论支持,同时也证明了该被动测距技术的适用性。
Abstract
In the atmosphere, the exponential decay of the gas concentration with altitude causes the uneven distribution of atmospheric refractive index. With the propagation of the target radiation in the atmosphere, the radiation path turns into curves due to refraction. While getting target distance, oxygen absorption rate is calculated along the apparent path, which makes the existence of an intrinsic error term of oxygen absorption passive ranging named refraction absorption error. In order to analyze the impact of the refraction absorption error on passive ranging, the oxygen concentrations of the radiation path and apparent path are individually calculated. The relationship between the refraction absorption error and target real distance under different apparent zenith angles is established, through the method of making oxygen content of radiation path equaling that of apparent path. The results show that the refraction absorption error increases with the increasing of the path length at the same zenith angle. When zenith angle is less than 90°, the change of refraction absorption error is very complex, but could satify precision of shorten ranging under 100 km and long range alarm above 150 km. When zenith angle is greater than 90°, the change of the refraction absorption error is simple and the value of that is very small, and therefore precision ranging in the whole ranging can be realized. The conclusion can provide a theoretical support for the error correction of passive ranging technology based on oxygen absorption, and prove the applicability of the passive ranging technology.
参考文献

[1] R H Michael. Passive Ranging Using Atmospheric Oxygen Absorption Spectra [D]. Ohio: Air Force Institute of Technology. Wright-Patterson Air Force Base, 2006.

[2] Joel R Anderson, Louis M Szczkowski, Brandon R Abel, et al.. Monocular Passive Ranging [D]. Ohio: Air Force Flight Test Center (AU), 2009.

[3] Joel R Anderson. Monocular Passive Ranging by an Optical System with Band Pass Filtering [D]. Ohio: Air Force Institute of Technology . Wright-Patterson Air force Base, 2010.

[4] R Anthony Vincent. Passive Ranging of Dynamic Rocket Plumes Using Infrared and Visible Oxygen Attenuation [D]. Ohio: Air Force Institute of Technology. Wright-Patterson Air Force Base, 2011, 8052.

[5] 宗鹏飞, 张记龙, 王志斌, 等. 氧气A带红外辐射不同路径透过率的仿真分析[J]. 激光与红外, 2013, 43(2): 171-175.

    Zong Pengfei, Zhang Jilong, Wang Zhibin, et al.. Simulation and analysis of oxygen 'A' band′s transmittance of infrared along slanting route [J]. Laser & Infrared, 2013, 43(2): 171-175.

[6] 宗鹏飞, 王志斌, 张记龙, 等. 基于红外被动测距的基线拟合算法研究[J]. 激光技术, 2013, 37(2): 174-177.

    Zong Pengfei, Wang Zhibin, Zhang Jilong, et al.. Study on baseline fitting method based on passive infrared range measurement [J]. Laser Technology, 2013, 37(2): 174-177.

[7] 闫宗群, 刘秉琦, 华文深, 等. 利用氧气吸收被动测距的近程实验[J]. 光学 精密工程, 2013, 21(11): 2744-2750.

    Yan Zongqun, Liu Bingqi, Hua Wenshen, et al.. Short-range experiment of passive ranging by oxgen absorption [J]. Optics and Precision Engineering, 2013, 21(11): 2744-2750.

[8] Yan Zongqun, Liu Bingqi, Hua Wenshen. Theoretical analysis of the effect of meteorologic factors on passive ranging technology based on oxygen absorption spectrum [J]. Optik, 2013, 124(23): 6450-6455.

[9] 路远, 凌永顺, 聂劲松. 激光穿越大气层时的折射误差研究[J]. 红外与激光工程, 2003, 32(1): 69-72.

    Lu Yuan, Ling Yongshun, Nie Jinsong. Study on the regraction error of laser beam through the earth′s atmosphere [J]. Infrared and Laser Engineering, 2003, 32(1): 69-72.

[10] 袁宏武, 梅海平,黄印博, 等. 星载激光测距大气校正算法与模型研究[J]. 光学学报, 2011, 31(4): 0401004.

    Yuan Hongwu, Mei Haiping, Huang Yinbo, et al.. Research on atmospheric refraction correction algorithm and model for satellite laser range-finding [J]. Acta Optica Sinica, 2011, 31(4): 0401004.

[11] 王海涌, 林浩宇, 周文睿. 星光观测蒙气差补偿技术[J]. 光学学报, 2011, 31(11): 1101002.

    Wang Haiyong, Lin Haoyu, Zhou Wenrui. Technology of atmospheric refraction compensation in starlight observation [J]. Acta Optica Sinica, 2011, 31(11): 1101002.

[12] 张瑜, 袁秋林. 雷达至目标的电波射线描迹方法研究[J]. 河南师范大学学报(自然科学版), 2006, 34(2): 50-53.

    Zhang Yu, Yuan Qiulin. The method research of radio-wave radial track description from radar to objective [J]. Journal of Henan Normal University (Natural Science), 2006, 34(2): 50-53.

[13] 张瑜. 机动雷达系统中的电波折射修正方法[J]. 中国空间科学技术, 2000, 20(4): 67-71.

    Zhang Yu. The method of radio wave refraction correction in movable radar system [J]. Chinese Space Science and Technology, 2000, 20(4): 67-71.

[14] 张瑜. 激光在大气传输中的到达角误差修正方法研究[J]. 河南师范大学学报(自然科学版), 2008, 36(2): 57-59.

    Zhang Yu.The arriving angle error correction method of the laser transmitting in atmosphere [J]. Journal of Henan Normal University (Natural Science), 2008, 36(2): 57-59.

[15] 张士杰, 李俊山, 孙李辉, 等. 小入射角条件下气动光学成像偏移[J]. 光学学报, 2012, 32(10): 1001002.

    Zhang Shijie, Li Junshan, Sun Lihui, et al.. Aero-optical imaging deviation under the small-incidence-angle condition [J]. Acta Optica Sinica, 2012, 32(10): 1001002.

[16] 石广玉. 大气辐射学[M]. 北京: 科学出版社, 2007.

    Shi Guangyu. Atmospheric Radiation Science [M]. Beijing: Sciences Press, 2007.

[17] 孙刚, 翁宁泉, 肖黎明, 等. 大气温度分布特性及对折射率结构常数的影响[J]. 光学学报, 2004, 24(5): 592-596.

    Sun Gang, Weng Ningquan, Xiao Liming, et al.. Profile and character of atmospheric temperature [J]. Acta Optica Sinica, 2004, 24(5): 592-596.

[18] 王敏, 胡顺星, 苏嘉, 等. 纯转动拉曼激光雷达反演低层大气折射率廓线[J]. 中国激光, 2008, 35(12): 1986-1991.

    Wang Min, Hu Shunxing, Su Jia, et al.. Measurement of refractive profiles using a pure rotational Raman radar in the lower-atmosphere [J]. Chinese J Lasers, 2008, 35(12): 1986-1991.

闫宗群, 刘秉琦, 华文深, 张瑜, 吴健. 氧气吸收被动测距技术中的折射吸收误差[J]. 光学学报, 2014, 34(9): 0901002. Yan Zongqun, Liu Bingqi, Hua Wenshen, Zhang Yu, Wu Jian. Refraction Absorption Error of Passive Ranging Technology Based on Oxygen Absorption[J]. Acta Optica Sinica, 2014, 34(9): 0901002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!