Photonics Research, 2020, 8 (5): 05000659, Published Online: Apr. 22, 2020  

Fully reversible spectral compression of arbitrary pulsed data signals Download: 697次

Author Affiliations
Institut National de la Recherche Scientifique–Énergie, Matériaux et Télécommunications (INRS–EMT), H5A 1K6 Montréal, Quebec, Canada
Copy Citation Text

Luis Romero Cortés, Reza Maram, José Azaña. Fully reversible spectral compression of arbitrary pulsed data signals[J]. Photonics Research, 2020, 8(5): 05000659.

References

[1] SklarB., Digital Communications Fundamentals and Applications (Prentice-Hall, 2001).

[2] A data pulse sequence follows a nonreturn-to-zero (NRZ) coding format when temporal duration of the pulses is fixed to coincide with the inter-symbol period, so that there are no guard times between consecutive symbols. When the pulse duration is shorter than the inter-symbol period, the sequence follows a return-to-zero (RZ) coding format, leaving guard times between consecutive symbols.

[3] R.-J. Essiambre, G. J. Foschini, G. Kramer, P. J. Winzer. Capacity limits of information transport in fiber-optic networks. Phys. Rev. Lett., 2008, 101: 163901.

[4] R. Won. Communication networks beyond the capacity crunch: is it crunch time?. Nat. Photonics, 2015, 9: 424-426.

[5] S. K. Turitsyn, J. E. Prilepsky, S. T. Le, S. Wahls, L. L. Frumin, M. Kamalian, S. A. Derevyanko. Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives. Optica, 2017, 4: 307-322.

[6] A. D. Ellis, M. E. McCarthy, M. A. Z. Al Khateeb, M. Sorokina, N. J. Doran. Performance limits in optical communications due to fiber nonlinearity. Adv. Opt. Photon., 2017, 9: 429-503.

[7] S. T. Le, V. Aref, H. Buelow. Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit. Nat. Photonics, 2017, 11: 570-576.

[8] C. Caspar, H.-M. Foisel, A. Gladisch, N. Hanik, F. Kuppers, R. Ludwig, A. Mattheus, W. Pieper, B. Strebel, H. Weber. RZ versus NRZ modulation format for dispersion compensated SMF-based 10-Gb/s transmission with more than 100-km amplifier spacing. IEEE Photon. Technol. Lett., 1999, 11: 481-483.

[9] M. I. Hayee, A. E. Willner. NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems. IEEE Photon. Technol. Lett, 1999, 11: 991-993.

[10] R. Ludwig. Experimental comparison of 40 Gbit/s RZ and NRZ transmission over standard single mode fibre. Electron. Lett., 1999, 35: 2216-2218.

[11] C. W. Chow, C. S. Wong, H. K. Tsang. All-optical RZ to NRZ data format and wavelength conversion using an injection locked laser. Opt. Commun., 2003, 223: 309-313.

[12] M. Seghilani, R. Maram, J. Azaña. Mitigating nonlinear propagation impairments of ultrashort pulses by fractional temporal self-imaging. Opt. Lett., 2017, 42: 879-882.

[13] J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, H. L. Minh. Ethernet FSO communications link performance study under a controlled fog environment. IEEE Commun. Lett., 2012, 16: 408-410.

[14] M. L. Stevens, D. M. Boroson. A simple delay-line 4-PPM demodulator with near-optimum performance. Opt. Express., 2012, 20: 5270-5280.

[15] OppenheimA.WilskyA. S., Signals and Systems (Prentice-Hall, 1997).

[16] H. F. Talbot. LXXVI. Facts relating to optical science. No. IV. Philos. Mag., 1836, 9: 401-407.

[17] L. Rayleigh. XXV. On copying diffraction-gratings, and on some phenomena connected therewith. Philos. Mag., 1881, 11: 196-205.

[18] M. V. Berry, S. Klein. Integer, fractional and fractal Talbot effects. J. Mod. Opt., 1996, 43: 2139-2164.

[19] S. Matsutani, Y. Ônishi. Wave-particle complementarity and reciprocity of Gauss sums on Talbot effects. Found. Phys. Lett., 2003, 16: 325-341.

[20] L. Romero Cortés, H. G. de Chatellus, J. Azaña. On the generality of the Talbot condition for inducing self-imaging effects on periodic objects. Opt. Lett., 2016, 41: 340-343.

[21] L. Romero Cortés, R. Maram, H. G. de Chatellus, J. Azaña. Arbitrary energy-preserving control of optical pulse trains and frequency combs through generalized Talbot effects. Laser Photon. Rev., 2019, 13: 1900176.

[22] L. Romero Cortés, M. Seghilani, R. Maram, J. Azaña. Full-field broadband invisibility through reversible wave frequency-spectrum control. Optica, 2018, 5: 779-786.

[23] WeinerA. M., Ultrafast Optics (Wiley, 2009).

[24] J. Azaña, M. A. Muriel. Temporal self-imaging effects: theory and application for multiplying pulse repetition rates. IEEE J. Sel. Top. Quantum Electron., 2001, 7: 728-744.

[25] C. R. Fernández-Pousa. On the structure of quadratic Gauss sums in the Talbot effect. J. Opt. Soc. Am. A, 2017, 34: 732-742.

[26] L. Romero Cortés, R. Maram, H. G. de Chatellus, J. Azaña. Subnoise detection and passive amplification of frequency combs through customized coherent spectral energy redistribution. Phys. Rev. Appl., 2018, 9: 064017.

[27] D. Pudo, M. Depa, L. R. Chen. Single and multiwavelength all-optical clock recovery in single-mode fiber using the temporal Talbot effect. J. Lightwave Technol., 2007, 25: 2898-2903.

[28] R. Maram, L. Romero Cortés, J. Azaña. Sub-harmonic periodic pulse train recovery from aperiodic optical pulse sequences through dispersion-induced temporal self-imaging. Opt. Express, 2015, 23: 3602-3613.

[29] K. Patorski. I. The self-imaging phenomenon and its applications. Prog. Opt., 1989, 27: 1-108.

[30] J. Wen, Y. Zhang, M. Xiao. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photon., 2013, 5: 83-130.

[31] Before each electro-optical modulator, a tunable optical delay line and a polarization controller are connected in order to align the voltage drive to the optical signal and to maximize the modulation efficiency. Additionally, RF amplifiers were used to boost the voltage drive signals of each electro-optical modulator.

[32] AgrawalG. P., Fiber-Optic Communication Systems (Wiley, 2002).

[33] FreudeW.SchmogrowR.NebendahlB.WinterM.JostenA.HillerkussD.KoenigS.MeyerJ.DreschmannM.HuebnerM.KoosC.BeckerJ.LeutholdJ., “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical NetworksCoventry, UK (July2012), paper Mo.B1.5.

[34] N. Calabretta, H.-D. Jung, E. Tangdiongga, H. Dorren. All-optical packet switching and label rewriting for data packets beyond 160 Gb/s. IEEE Photon. J., 2010, 2: 113-129.

[35] J. Luo, H. J. S. Dorren, N. Calabretta. Optical RF tone in-band labeling for large-scale and low-latency optical packet switches. J. Lightwave Technol., 2012, 30: 2637-2645.

[36] P. De Heyn, J. Luo, S. Di Lucente, N. Calabretta, H. J. S. Dorren, D. Van Thourhout. In-band label extractor based on cascaded Si ring resonators enabling 160 Gb/s optical packet switching modules. J. Lightwave Technol., 2014, 32: 1647-1653.

[37] A. Saljoghei, C. Browning, L. P. Barry. In-band insertion of RoF LTE services in OOK based PON’s using line coding techniques. Opt. Commun., 2015, 356: 488-494.

[38] NekoogarF., Ultra-Wideband Communications: Fundamentals and Applications (Prentice-Hall, 2006).

[39] M. G. M. Hussain. Ultra-wideband impulse radar–an overview of the principles. IEEE Aerosp. Electron. Syst. Mag., 1998, 13: 9-14.

[40] P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, A. Bogoni. A fully photonics-based coherent radar system. Nature, 2014, 507: 341-345.

[41] J. Hoxha, J. Morosi, S. Shimizu, P. Martelli, P. Boffi, N. Wada, G. Cincotti. Spectrally-efficient all-optical OFDM by WSS and AWG. Opt. Express, 2015, 23: 10986-10996.

Luis Romero Cortés, Reza Maram, José Azaña. Fully reversible spectral compression of arbitrary pulsed data signals[J]. Photonics Research, 2020, 8(5): 05000659.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!