光子学报, 2016, 45 (2): 0224003, 网络出版: 2016-04-01   

一种石墨烯波导褶皱激发表面等离子体激元的设计

Design of Folds Graphene Waveguide Excited Surface Plasmon Polaritons
作者单位
1 广西师范大学 a.电子工程学院
2 广西师范大学 b.数学与统计学院,广西 桂林 541004
摘要
设计了褶皱石墨烯波导结构激发表面等离子体激元,通过设计周期阵列结构实现了表面等离子体激元传播损耗的补偿.理论分析了周期阵列结构的表面等离子体激元传播模型和补偿损耗的方式,结果表明褶皱衍射激发表面等离子体激元波导不仅能够激发表面等离子体激元,还能利用表面等离子体激元波矢关系实现器件参数控制,周期阵列增益全程补偿损耗的方式可以显著增加表面等离子体激元的传播距离.数值分析结果进一步表明:该结构具备了保持亚波长尺寸的强局域化优势;周期阵列增益全程补偿可以显著提高纳米腔中的电场强度,降低传输损耗;波导结构的粒子反转水平较高,自发辐射噪声的扰动较低.设计的石墨烯波导器件可以为微纳光学集成、光子传感和测量等领域提供理想的亚波长光子器件.
Abstract
The folds graphene waveguide excited Surface Plasmon Polaritons(SPPs) was designed and full compensation structures could be realized with periodic array by graphene material. The propagation model of period folds excited SPPs and the full compensation were analyzed theoretically. The results of theoretically analysis show that the period fold structure can not only excite SPPs, but also control device parameters using SPPs wave relations. In addition, periodic array compensation can significantly increase the propagation distance of SPPs. Further simulation results show that the proposed structure has the advantage of strong localized and subwavelength waveguide size; periodic array compensation can significantly improve the electric field strength of nanocavity; structure of graphene waveguide expresses high levels of population inversion and low spontaneous emission noise disturbance. The proposed graphene waveguide devices can be provided for the micronano optics, photonic sensing and measurement.
参考文献

[1] ALBUQUERQUE E L, COTTAM M G. Damping of surface plasmon‐polaritons in semiconductor superlattices[J]. Physica Status Solidi, 1992, 170(1):K17K20.

[2] SHENG J S, LUE J T. Resonant reflectance dips induced by coupled surface plasmon polaritons in thin metal[J]. Applied Physics A, 1992, 55(6):537544.

[3] OKAMOTO T, HARAGUCHI M, FUKUI M. Optical bistability associated with surface plasmon polariton excitation[J]. Journal of the Physical Society of Japan, 1992, 61(5):15491555.

[4] KRENN R J, WEEBER C J. Surface plasmon polaritons in metal stripes and wires[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2004, (1817):739756.

[5] ZHONG Dongzhou, JI Yongqiang. Electrooptical composite logic gates based on periodically poled lithium niobate crystal[J]. Acta Photonica Sinica, 2015, 44(5): 0523004

[6] ZHU Jun, LI Zhiquan. Transmission characteristics of surface plasmon polariton based on strip structure[J]. Acta Photonica Sinica, 2014, 43(10): 1005003

[7] LI Zhiquan, YAN Lei, GUO Jialiang,et al. Characteristic analysis of noise factor in the periodic stripe long range surface plasmon polaritons structure[J]. Acta Photonica Sinica, 2015, 44(3): 0319001

[8] ABRAMOV A S, ZOLOTOVSKII I O, SEMENTSOV D I. Amplification of surface plasmon polaritons in the HTSC film–dielectric structure[J]. Optics & Spectroscopy, 2015, 119(5):875882.

[9] LIANG X, WANG J, TANG B, et al. Undirectional launcher of surface plasmon polaritons based on subwavelength slits with sideillumination and backsideillumination[J]. Optik  International Journal for Light and Electron Optics, 2016, 127(3):1139–1143.

[10] HUANG Y, QIU W, LIN S, et al. Analysis of mode characteristics and output efficiency of graphene equilateral triangle nanocavity with vertex output waveguide[J]. Optical & Quantum Electronics, 2016, 48(1):110.

[11] VJAHNG J, LADANI F T, KHAN R M, et al. Visualizing surface plasmon polaritons by their gradient force.[J]. Optics Letters, 2015, 40(21):50585061.

[12] EVSEEV D A, SANNIKOV D G, SEMENTSOV D I. Surface plasmon polaritons at the interface between dielectric and anisotropic nanocomposite[J]. Journal of Communications Technology & Electronics, 2015, 60(2):158165.

[13] JAHNG J, LADANI F T, KHAN R M, et al. Visualizing surface plasmon polaritons by their gradient force.[J]. Optics Letters, 2015, 40(21):50585061

[14] GAO W, SHI G, JIN Z, et al. Excitation and active control of propagating surface plasmon polaritons in graphene[J]. Nano Letters, 2013, 13(8):36983702.

[15] SALIHOGLU O, BALCI S, KOCABAS C. Plasmonpolaritons on graphenemetal surface and their use in biosensors[J]. Applied Physics Letters, 2012, 100(21):213110.

[16] BLUDOV Y V, FERREIRA A, PERES N M R, et al. A primer on surface plasmonpolaritons in graphene[J]. International Journal of Modern Physics B, 2013, 27(10):16.

[17] PERES N M R, YU V B, AIRES F, et al. Exact solution for squarewave grating covered with graphene: surface plasmonpolaritons in the terahertz range.[J]. Journal of Physics. Condensed Matter : an Institute of Physics Journal, 2013, 25(12):269275.

[18] ALDO A, COSTANTINO D A, ANDREA L, et al. Tuning of surface plasmon polaritons beat length in graphene directional couplers.[J]. Optics Letters, 2013, 38(20):42284231.

[19] GAO Libo, REN Wencai, XU Huilong, et al. Repeated growth and bubbling transfer of graphene with millimetresize singlecrystal grains using platinum[J]. Nature Communications 2012, 699(3): 17.

朱君, 秦柳丽, 傅得立, 宋树祥. 一种石墨烯波导褶皱激发表面等离子体激元的设计[J]. 光子学报, 2016, 45(2): 0224003. ZHU Jun, QIN Liuli, FU Deli, SONG Shuxiang. Design of Folds Graphene Waveguide Excited Surface Plasmon Polaritons[J]. ACTA PHOTONICA SINICA, 2016, 45(2): 0224003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!