强激光与粒子束, 2016, 28 (4): 045015, 网络出版: 2016-04-01  

小型整体径向传输线的设计与实验

Design and experiment of small monolithic radial transmission line
作者单位
清华大学 电机工程与应用电子技术系, 北京 100084
摘要
设计了一个小型整体径向传输线并对其传输特性进行了实验研究。该传输线由两块相距1 cm的铝合金平板组成,其特征阻抗采用双曲线型。1个输出端口位于传输线中央,20个输入端口均匀分布在传输线的外圆周上,最多可供20路脉冲同时注入。此传输线浸没于去离子水中,其单向传输时间为15 ns。负载由20个154 Ω的电阻并联而成,以保证输出端的阻抗匹配。实验测得的输出电压波形与3维电磁场仿真结果非常接近。此外,还通过实验研究了不同驱动脉冲路数情况下小型整体径向传输线的输出电压,发现在驱动脉冲路数较少的情况下,输出电压的幅值几乎正比于驱动脉冲的路数。
Abstract
An experimental system of a small monolithic radial transmission line is established. This line with hyperbolic characteristic impedance is composed of 2 aluminium-alloy plates with a distance of 1 cm. One output port is placed at the center, while 20 input ports are placed uniformly at the outer circumference. Therefore, the maximum number of input pulses of this line is 20. The line is entirely immersed into deionized water, which makes its one-way transmit time 15 ns. The matched load is composed of 20 154 Ω in parallel. The output voltage obtained in experiment is very close to the result of 3-dimensional electromagnetic simulation. Moreover, by investigating the output voltage with different numbers of input pulses, it is found that the amplitude of the line’s output voltage is nearly proportional to the number of input pulses when the number of input pulses is small.
参考文献

[1] Stygar W A, Cuneo M E, Headley D I, et al. Architecture of petawatt-class Z-pinch accelerators [J]. Physical Review Special Topics-Accelerators and Beams, 2007, 10: 030401.

[2] Mao Chongyang, Zou Xiaobing, Wang Xinxin. Analytical solution of nonuniform transmission lines for Z-pinch[J]. IEEE Trans Plasma Science, 2014, 42(8): 2092-2097.

[3] Hsue Ching-wen, Hechtman C D. Transient analysis of nonuniform, high-pass transmission lines[J]. IEEE Trans Microwave Theory and Techniques, 1990, 38(8): 1023-1030.

[4] 曾正中. 指数传输线输出波形和传输效率的级数近似解[J]. 强激光与粒子束, 2011, 23(8): 2247-2251. (Zeng Zhengzhong. Approximate series solutions of pulse waveforms and transmission efficiencies of exponential transmission line. High Power Laser and Particle Beams, 2011, 23(8): 2247-2251)

[5] 毛重阳, 王新新, 邹晓兵, 等. PW级脉冲驱动器的整体径向传输线的研究[J]. 高电压技术, 2015, 41(6): 1818-1829. (Mao Chongyang, Wang Xinxin, Zou Xiaobing, et al. Investigation on monolithic radial transmission line used in petawatt-class pulsed power drivers. High Voltage Engineering, 2015, 41(6): 1818-1829)

[6] 曾正中. PW级Z箍缩驱动源指数传输线的电路模拟[J]. 强激光与粒子束, 2011, 23(7): 1985-1988. (Zeng Zhengzhong. Circuit simulation of exponential transmission line for petawatt Z-pinch plasma drivers. High Power Laser and Particle Beams, 2011, 23(7): 1985-1988)

[7] 王勐, 邹文康, 陈林, 等. 指数型径向阻抗变换器功率传输效率的优化设计[J]. 强激光与粒子束, 2011, 23(8): 2252-2256. (Wang Meng, Zou Wenkang, Chen Lin, et al. Optimization design of power efficiency of exponential impedance transformer. High Power Laser and Particle Beams, 2011, 23(8): 2252-2256)

[8] 张蕊, 黄昆, 邹晓兵, 等. 基于等阻抗差分段法的变阻抗线电路模拟[J]. 强激光与粒子束, 2012, 24(5): 1221-1224. (Zhang Rui, Huang Kun, Zou Xiaobing, et al. Circuit simulation of variable-impedance transmission line based on equal-impedance-difference segmentation method. High Power Laser and Particle Beams, 2012, 24(5): 1221-1224)

[9] Hu Yixiang, Qiu Ai’ci, Huang Tao, et al. Simulation analysis of transmission-line impedance transformers with the Gaussian, exponential, and linear impedance profiles for pulsed-power accelerators[J]. IEEE Trans Plasma Science, 2011, 39(11): 3227-3232.

[10] Zhang Rui, Mao Chongyang, Huang Kun, et al. Comparison of nonuniform transmission lines with Gaussian and exponential impedance profiles for Z-pinch[J]. IEEE Trans Plasma Science, 2012, 40(12): 3395-3398.

[11] Welch D R, Genoni T C, Rose D V, et al. Optimized transmission-line impedance transformers for petawatt-class pulse-power accelerators[J]. Physical Review Special Topics-Accelerators and Beams, 2008, 11: 030401.

[12] Mao Chongyang, Zou Xiaobing, Wang Xinxin. Three-dimensional electromagnetic simulation of monolithic radial transmission lines for Z-pinch[J]. Laser and Particle Beams, 2014, 32(4): 599-603.

[13] 毛重阳, 邹晓兵, 王新新. 同轴型变阻抗线传输特性的电磁场与电路仿真比较[J]. 强激光与粒子束, 2014, 26: 045019. (Mao Chongyang, Zou Xiaobing, Wang Xinxin. Comparison of transmission of coaxial nonuniform transmission lines between electromagnetic fields simulation and circuit simulation. High Power Laser and Particle Beams, 2014, 26: 045019)

[14] Petr R A, Nunnally W C, Smith C V, et al. Investigation of a radial transmission line transformer for high-gradient particle accelerators[J]. Review of Scientific Instruments, 1988, 59(1): 132-136.

[15] 毛重阳, 邹晓兵, 王新新. 多路高电压纳秒矩形波脉冲发生器的研制[J]. 强激光与粒子束, 2015, 27: 045004. (Mao Chongyang, Zou Xiaobing, Wang Xinxin. Development of multi-way high-voltage nanosecond rectangle wave pulsed power generator. High Power Laser and Particle Beams, 2015, 27: 045004)

    Mao Chongyang, Zou Xiaobing, Wang Xinxin. Note: A novel method for generating multichannel quasi-square-wave pulses[J]. Review of Scientific Instruments, 2015, 86: 086110.

毛重阳, 邹晓兵, 王新新. 小型整体径向传输线的设计与实验[J]. 强激光与粒子束, 2016, 28(4): 045015. Mao Chongyang, Zou Xiaobing, Wang Xinxin. Design and experiment of small monolithic radial transmission line[J]. High Power Laser and Particle Beams, 2016, 28(4): 045015.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!