强激光与粒子束, 2019, 31 (10): 103202, 网络出版: 2019-10-14   

航天器空间静电效应研究进展

Progress of the research of space electrostatic effect of spacecraft
作者单位
陆军工程大学石家庄校区 电磁环境效应国家级重点实验室, 石家庄 050003
摘要
航天器在轨运行过程中面临的空间环境复杂多变, 高能电子、等离子体环境、低气压、大温差等环境因素会引起航天器发生静电带电和放电效应, 对航天器的安全运行造成严重影响。基于国内外试验数据和案例分析了空间环境引起的航天器故障, 从数值仿真软件、地面模拟技术、强场诱发放电以及防护技术等方面介绍了空间环境作用下航天器充放电效应研究进展, 对我国目前研究差距和未来研究方向进行了展望。研究表明: 我国航天器充放电效应防护技术研究取得了进步, 下一步重点针对空间站、深空探测、探月工程等新任务, 进一步拓展空间环境作用下航天器充放电效应机理和防护新技术研究, 为提升我国航天器的安全性和可靠性提供技术支撑。
Abstract
The space environment in which the spacecraft located in orbit is complex and changeable. Environmental factors such as high-energy electrons, plasma environment, low pressure, large temperature difference and so on can cause electrostatic charge-discharge effects on the spacecrafts, which seriously affects the safety of the spacecraft. Based on the experimental data and cases at home and abroad, this paper analyzes the spacecraft faults caused by the space environment, introduces the research progress of the effect on spacecraft electrostatic charging-discharging in the space environment from the aspects of numerical simulation software, ground analogy technology, strong electromagnetic field induced discharging and protection technology. It finally presents prospects of the research gap and future research direction in China. The research indicates that progress has been made in the research of spacecraft charge-discharge effect protection technology in China. The next step is to focus on new tasks such as space station, deep space exploration and lunar exploration, and further expand the research on the mechanism of spacecraft charge-discharge effect and new protection technologies under space environment, so as to provide technical support for improving the safety and reliability of spacecraft in China.
参考文献

[1] 空间科学和技术综合专题组.2020年中国空间科学和技术发展研究[C]//2020年中国科学和技术发展研究暨科学家讨论会论文集. 2004: 384-432.(Comprehensive Thematic Group on Space Science and Technology. China’s research on space science and technology development in 2020//China’s Symposium on Science and Technology Development and Scientists in 2020. 2004: 384-432)

[2] 许滨,武占成,郝永锋,等.航天器在轨空间环境研究[J].河北科技大学学报, 2011, 32(s2): 9-14.(Xu Bin, Wu Zhancheng, Hao Yongfeng, et al. Spacecraft on-orbit space environment research. Journal of Hebei University of Science and Technology, 2011, 32(s2): 9-14)

[3] 薛梅.高压砷化镓太阳阵ESD效应及防护技术研究[D].天津: 天津大学, 2007.(Xue Mei. Study on ESD effect and protection technology of high-voltage gallium arsenide solar array. Tianjin: Tianjin University, 2007)

[4] 赵雪,蔡震波.空间环境及效应对在轨航天器的影响分析[C]//第六届空间物理专业委员会全体会议暨空间环境研究预报专题研讨会. 2004.(Zhao Xue, Cai Zhenbo. The impact of space environment and effectiveness on on-orbit spacecraft//Sixth Plenary Session of the Special Committee on Space Physics and Symposium on Space Environment Research and Forecast. 2004)

[5] 刘尚合,魏光辉,刘直承,等.静电理论与防护[M].北京: 兵器工业出版社, 1999.(Liu Shanghe, Wei Guanghui, Liu Zhicheng, et al. Electrostatic theory and protection. Beijing: Weapons Industry Press, 1999)

[6] 杜春普.静电危害与防护[J].惯导与仪表, 2001(2): 38-48.(Du Chunpu. Electrostatic hazards and protection. Inertial Navigation and Instrumentation, 2001(2): 38-48)

[7] 庞永江,徐跃民.地面实验室模拟空间等离子体环境的初步测试[J].空间科学学报, 2001, 21(3): 259-265.(Pang Yongjiang, Xu Yuemin. Preliminary test of simulated space plasma environment in ground laboratory. Journal of Space Science, 2001, 21(3): 259-265)

[8] 黄本诚,童靖宇.空间环境工程学[M].北京: 中国科学技术出版社, 2010.(Huang Bencheng, Tong Jingyu. Space environmental engineering. Beijing: China Science and Technology Press, 2010)

[9] 庞永江.地面实验室模拟空间等离子体环境及太阳能电池片效应初步实验研究[D].北京: 中国科学院空间科学与应用研究中心, 2001.(Pang Yongjiang. Preliminary experimental study on simulated space plasma environment and solar cell effect in ground laboratory. Beijing: Center for Space Science and Application, Chinese Academy of Sciences, 2001)

[10] Finckenor M M, Kamenetzky R R, Vaughn J A, et al. Space environmental effects testing in support of the international space station[C]//38th AIAA Aerospace Sciences Meeting and Exhibit. 2001.

[11] Wilkes D R, Zwiener J M. Science data report for the Optical Properties Monitor (OPM) experiment[R]. NASA CR-2001-210881.

[12] Prebola J L, Bertrand W T, Crider D H, et al. Development of a combined space environment test facility at AEDC[R]. Aerospace Testing, 2006.

[13] 师立勤.低轨道航空器辐射环境和表面充电效应研究[D].北京: 中国科学技术大学, 2011.(Shi Liqin. Study on the radiation environment and surface charging effect of low orbit aircraft. Beijing: China University of Science and Technology, 2011)

[14] Okumura T, Mashidori H, Takahashi M, et al. Temperature effect on primary discharge under simulated space plasma environment[J]. IEEE Trans Plasma Science, 2012, 40(2): 345-350.

[15] Katz I, Cassidy J J, Mandell M J, et al. The capabilities of the NASA charging analyzer program[J]. Spacecraft Charging Technol, 1978, 10: 101-122.

[16] Mandell M J, Davis V A, Cooke D L, et al. Nascap-2K spacecraft charging code overview[J]. IEEE Trans Plasma Science, 2006, 34(5): 2084-2093.

[17] Roussel J F, Rogier F, Dufour G, et al. SPIS open-source code: Methods, capabilities, achievements, and prospects[J]. IEEE Trans Plasma Science, 2008, 36(5): 2360-2368.

[18] Muranaka T, Hosoda S, Kim J H, et al. Development of multi-utility spacecraft charging analysis tool[J]. IEEE Trans Plasma Science, 2008, 36(5): 2336-2349.

[19] Roeder J L, Fennell J F. Differential charging of satellite surface materials[J]. IEEE Trans Plasma Science, 2009, 37(1): 281-289.

[20] 吴中华,古士芬,臧振群,等.航天器表面充电效应及其工程计算[J].环模技术, 1999(2): 9-13.(Wu Zhonghua, Gu Shifen, Zang Zhenqun, et al. Surface charging effect of spacecraft and its engineering calculation. Ring-Mode Technology, 1999(2): 9-13)

[21] 李丹明,陈学康.空间环境效应与防护技术研究现状与发展设想[J].航天器环境工程, 2008, 25(3): 224-228.(Li Danming, Chen Xuekang. Research status and development assumption of space environmental effects and protection technology. Spacecraft Environmental Engineering, 2008, 25(3): 224-228)

[22] 闫德奎.大幅照面电子枪模拟空间地磁亚暴环境的方法研究[D].武汉: 武汉大学, 2005.(Yan Dekui. Method of simulating space geomagnetic sub-storm environment with large-scale illumination electron gun. Wuhan: Wuhan University, 2005)

[23] NASA. Avoiding problems caused by spacecraft on-orbit interal charging effects[R]. NASA-Hdbk-4002, 1999.

[24] 原青云,孙永卫,张希军,等.航天器带电理论及防护[M].北京: 国防工业出版社, 2016.(Yuan Qingyun, Sun Yongwei, Zhang Xijun, et al. Spacecraft charging theory and protection. Beijing: National Defense Industry Press, 2016)

[25] 王立,秦晓刚.空间材料二次电子发射特性测试[J].真空与低温, 2002, 8(1): 18-21.(Wang Li, Qin Xiaogang. Measurement of secondary electron emission characteristics of space materials. Vacuum and Low Temperature, 2002, 8(1): 18-21)

[26] Kiefer R L, Orwoll R A. Shielding materials for highly penetrating space radiations[R]. NASA-CR-199720.

[27] Hoang B, Wong F K, Corey R L, et al. Combined space environmental exposure test of multijunction GaAs/Ge solar array coupons[J]. IEEE Trans Plasma Science, 2012, 40(2): 324-333.

[28] Purvis C K, Garrett A H B, Whittlesey C. Design guidelines for assessing and controlling spacecraft charging effects[R]. NASA TP-2361.

[29] Boscher D, Bourdarie S, et al. A new model for electrons fluxes in GEO[C]//54th International Astronautical Congress of the International Astronautical Federation. 2003.

[30] Fukushige S, Akahoshi Y, Watanabe K, et al. Solar-array arcing due to plasma created by space-debris impact[J]. IEEE Trans Plasma Science, 2008, 36(5): 2434-2439.

[31] Katz I, Davis V A, Snyder D B, et al. Mechanism for spacecraft charging initiated destruction of solar arrays in GEO[R]. AIAA Paper, 1998.

[32] Rodgers D. Spacecraft plasma interaction guidelines and handbook[R]. European Space Agency, 2004.

[33] Olsen R C. Record charging events from Applied Technology Satellite 6[J]. Journal of Spacecraft and Rockets, 1987, 24(4): 362-366.

胡小锋, 张建平, 许滨. 航天器空间静电效应研究进展[J]. 强激光与粒子束, 2019, 31(10): 103202. Hu Xiaofeng, Zhang Jianping, Xu Bin. Progress of the research of space electrostatic effect of spacecraft[J]. High Power Laser and Particle Beams, 2019, 31(10): 103202.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!