强激光与粒子束, 2014, 26 (3): 031015, 网络出版: 2014-03-31  

Cr对TiC-VC增强铁基熔覆层耐蚀性及耐磨性的影响

Effect of Cr on corrosion and wear resistances of TiC-VC reinforced ferrite-based laser cladding coatings
作者单位
山东大学 材料液固结构演变与加工教育部重点实验室, 济南 250061
摘要
通过X射线衍射、扫描电子显微镜、能谱仪、极化曲线和磨粒磨损实验分析,研究了不同Cr加入量对TiC-VC增强铁基激光熔覆层耐蚀性和耐磨性能的影响。结果表明:熔覆层中物相主要为α-Fe,TiC,VC和TiVC2。随着Cr加入量的增加,伴随有残余奥氏体及Cr3C2的出现,且Cr3C2呈长条状部分聚集、部分单独分布。熔覆层的耐蚀性与耐磨性随Cr加入量的增加呈现先增加后降低的趋势。熔覆粉末中加入适量的Cr元素能显著提高熔覆层的硬度与耐蚀性。当添加质量分数为3.0%的Cr时,熔覆层硬度高达1090HV0.2,且相同磨损条件下熔覆层磨损失重仅约为Q235钢的1/26;当添加质量分数为9.0%的Cr时,所得熔覆层的耐蚀性最好,约为不添加Cr时的3.26倍。
Abstract
The effect of different amounts of Cr in cladding powders on corrosion and wear resistances of cladding layers was investigated by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), potentiodynamic polarization and abrasive wear test. The results showed that phases of cladding layers were α-Fe, TiC, VC and TiVC2. Retained austenite and Cr3C2 would appear with Cr content increasing, and Cr3C2 was long strip and distributed alone or together. The corrosion and wear resistances of cladding layers increased firstly and then decreased with the increasing of Cr addition. Moderate amount of Cr could improve hardness and corrosion resistance of cladding layers significantly. The hardness of the cladding layer with 3.0 % Cr reached 1090HV0.2. The weight loss of cladding layer was only about 1/26 of Q235 steel under the same abrasive wear condition. When the addition of Cr was 9.0 %, the cladding layer showed the best corrosion resistance and its corrosion resistance was about 3.26 times than that of the cladding layer without Cr.
参考文献

[1] Dubourg L, Archambeault J. Technological and scientific landscape of laser cladding process in 2007[J]. Surface and Coatings Technology, 2008, 202(24): 5863-5869.

[2] Riabkina F M, Zahavi J. Laser alloying and cladding for improving surface properties[J]. Applied Surface Science, 1996, 106: 263-267.

[3] 李桂花, 邹勇, 邹增大, 等. 激光熔覆原位合成Nb(C,N)陶瓷颗粒增强铁基金属涂层[J].强激光与粒子束, 2012, 24(11): 2735-2740.(Li Guihua, Zou Yong, Zou Zengda, et al. In-situ synthesis of Nb(C,N) ceramic particles reinforced Fe-based composite coatings by laser cladding. High Power Laser and Particle Beams, 2012, 24(11): 2735-2740)

[4] 沈龙光, 张庆茂, 宋杰, 等. 铁基合金激光熔覆层的高温磨损性能[J].强激光与粒子束, 2009, 21(5): 658-662.(Shen Longguang, Zhang Qingmao, Song Jie, et al. Wear performance of Fe-based alloy strengthened by laser cladding under high temperature. High Power Laser and Particle Beams, 2009, 21(5): 658-662)

[5] 沈龙光, 张庆茂, 宋杰. 铁基合金激光熔覆层的高温润滑磨损性能[J].强激光与粒子束, 2009,21(11): 1628-1632.(Shen Longguang, Zhang Qingmao, Song Jie. Wear behavior under high temperature and lubrication condition of Fe-based alloy coating formed by laser cladding. High Power Laser and Particle Beams, 2009, 21(11): 1628-1632)

[6] Da Cunha Belo M, Hakiki N E, Ferreira M G S. Semiconducting properties of passive films formed on nickel-base alloys type alloy 600: influence of the alloying elements[J]. Electrochimica Acta, 1999,44(14): 2473-2481.

[7] Carmezim M J, Simes A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel[J]. Corrosion Science, 2005, 47(3): 581-591.

[8] Tsuchiya H, Fujimoto S, Chihara O, et al. Semiconductive behavior of passive films formed on pure Cr and Fe-Cr alloys in sulfuric acid solution[J]. Electrochimica Acta, 2002, 47(27): 4357-4366.

[9] Coutu L, Chaput L, Waeckerle T. 50.50 FeNi permalloy with Ti and Cr additions for improved hardness and corrosion resistance[J]. Journal of Magnetism and Magnetic Materials, 2000, 215/216: 237-239.

[10] Wiengmoon A, Pearce J T H, Chairuangsri T. Relationship between microstructure, hardness and corrosion resistance in 20wt.%Cr, 27wt.%Cr and 36wt.%Cr high chromium cast irons[J]. Materials Chemistry and Physics, 2011, 125(3): 739-748.

[11] Cai L X, Wang C M, Wang H M. Laser cladding for wear-resistant Cr-alloyed Ni2Si-NiSi intermetallic composite coatings[J]. Materials Letters, 2003, 57(19): 2914-2918.

[12] Bai Y, Xing J, Ma S, et al. Effect of 4wt.% Cr on microstructure, corrosion resistance and tribological properties of Fe3Al-20wt.%Al2O3 composites[J]. Materials Characterization, 2013, 78: 69-78.

[13] Cai L X, Wang H M, Wang C M. Corrosion resistance of laser clad Cr-alloyed Ni2Si/NiSi intermetallic coatings[J]. Surface and Coatings Technology, 2004, 182 (2/3): 294-299.

[14] 王晓荣, 王新洪, 杜宝帅, 等. 激光熔覆Fe-Ti-V-Cr-C合金涂层的微观组织和性能[J]. 材料工程, 2011, 3: 50-54.(Wang Xiaorong, Wang Xinhong, Du Baoshuai, et al. Microstructure and property of laser cladding Fe-Ti-V-Cr-C alloy coating. Journal of Materials Engineering, 2011, 3: 50-54)

[15] 杜宝帅, 李清明, 王新洪, 等. 激光熔覆原位自生TiC-VC颗粒增强Fe基金属陶瓷涂层[J]. 焊接学报, 2007, 28(4):65-68.(Du Baoshuai, Li Qingming, Wang Xinhong, et al. In situ synthesis of TiC-VC particles reinforced Fe-based metal matrix composite coating by laser cladding. Transactions of the China Welding Institution, 2007, 28(4): 65-68)

[16] Parameswaran P, Saroja S, Vijavalakshmi M, et al. Decomposition modes of austenite in Cr Mo ferritic steels[J]. Journal of Nuclear Materials, 1996, 232(2/3): 226-232.

张辉, 邹勇, 邹增大, 史传伟. Cr对TiC-VC增强铁基熔覆层耐蚀性及耐磨性的影响[J]. 强激光与粒子束, 2014, 26(3): 031015. Zhang Hui, Zou Yong, Zou Zengda, Shi Chuanwei. Effect of Cr on corrosion and wear resistances of TiC-VC reinforced ferrite-based laser cladding coatings[J]. High Power Laser and Particle Beams, 2014, 26(3): 031015.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!