中国激光, 2017, 44 (2): 0201009, 网络出版: 2017-02-22   

高功率掺镱光纤的现状及发展趋势 下载: 1230次

Status and Development Tendency of High Power Ytterbium Doped Fibers
作者单位
华中科技大学武汉光电国家实验室, 湖北 武汉 430074
引用该论文

王一礴, 李进延. 高功率掺镱光纤的现状及发展趋势[J]. 中国激光, 2017, 44(2): 0201009.

Wang Yibo, Li Jinyan. Status and Development Tendency of High Power Ytterbium Doped Fibers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201009.

参考文献

[1] Snitzer E. Proposed fiber cavities for optical lasers[J]. Journal of Applied Physics, 1961, 32: 36-39.

[2] Snitzer E. Optical maser action of Nd3+ in a barium crown glass[J]. Physical Review Letters, 1961, 7(12): 444-446.

[3] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186.

[4] Poole S B, Payne D N, Fermann M E. Fabrication of low-loss optical fibres containing rare-earth ions[J]. Electronics Letters, 1985, 21(17): 737-738.

[5] Mears R J, Reekie L, Poole S B, et al. Neodymium-doped silica single mode fibre lasers[J]. Electronics Letters, 1985, 21(17): 738-740.

[6] Jeong Y, Sahu J, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092.

[7] 光纤激光器的输出功率日益提升[OL]. [2016-09-12]. http://www.newmaker.com/art_36629.html.

[8] Sekiya E H, Barua P, Saito K, et al. Fabrication of Yb-doped silica glass through the modification of MCVD process[J]. Journal of Non-Crystalline Solids, 2008, 354(42): 4737-4742.

[9] Petita V, Sekiya E H, Okazakia T, et al. Improvement of Yb3+ doped optical fiber preforms by using MCVD method[C]. SPIE, 2008, 6998: 69980A.

[10] Webb A S, Boyland A J, Standish R J, et al. MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers[J]. Journal of Non-Crystalline Solids, 2010, 356(18-19): 848-851.

[11] Leich M, Just F, Langner A, et al. Highly efficient Yb-doped silica fibers prepared by powder sinter technology[J]. Optics Letters, 2011, 36(9): 1557-1559.

[12] Yoo S, Basu C, Boyland A J, et al. Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation[J]. Optics Letters, 2007, 32(12): 1626-1628.

[13] Dragic P D, Carlson D C, Croteau A. Characterization of defect luminescence in Yb doped silica fibers: Part I NBOHC[J]. Optics Express, 2008, 16(7): 4688-4697.

[14] Dragic P D, Liu Y S, Galvin T C, et al. Ultraviolet absorption and excitation spectroscopy of rare-earth-doped glass fibers derived from glassy and crystalline performs[C]. SPIE, 2012, 8237: 82370T.

[15] Engholm M, Norin L, Aberg D. Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation[J]. Optics Letters, 2007, 32(22): 3352-3354.

[16] Engholm M, Norin L. Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass[J]. Optics Express, 2008, 16(2): 1260-1268.

[17] Engholm M, Norin L. Comment on “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation”[J]. Optics Letters, 2008, 33(11): 1216.

[18] Guzman Chávez A D, Kir′yanov A V, Barmenkov Y O, et al. Reversible photo-darkening and resonant photo-bleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation[J]. Laser Physics Letters, 2007, 4(10): 734-739.

[19] Kitabayashi T, Ikeda M, Nakai M, et al. Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping[C]. CLEO, 2006: OThC5.

[20] Morasse B, Chatigny B, Gagnon E, et al. Low photodarkening single cladding ytterbium fibre amplifier[C]. SPIE, 2007, 6453: 64530H.

[21] Shubin A V, Yashkov M V, Melkumov M A, et al. Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers[C]. CLEO, 2007: CJ3-1-THU.

[22] Peretti R, Jurdyc A M, Jacquier B, et al. How do traces of thulium explain photodarkening in Yb doped fibers [J]. Optics Express, 2010, 18(19): 20455-20460.

[23] Jetschke S, Unger S, Schwuchow A, et al. Evidence of Tm impact in low-photodarkening Yb-doped fibers[J]. Optics Express, 2013, 21(6): 7590-7598.

[24] Jetschke S, Unger S, Schwuchow A, et al. Efficient Yb laser fibers with low photodarkening by optimization of the core composition[J]. Optics Express, 2008, 16(20): 15540-15545.

[25] Engholm M, Jelger P, Laurell F, et al. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping[J]. Optics Letters, 2009, 34(8): 1285-1287.

[26] Engholm M, Norin L. Ytterbium-doped fibers co-doped with cerium: next generation of fibers for high power fiber lasers [C]. SPIE, 2010, 7580: 758008.

[27] Hnninger I M, Boullet J, Cardinal T, et al. Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber[J]. Optics Express, 2007, 15(4): 1606-1611.

[28] Piccoli R, Gebavi H, Lablonde L, et al. Evidence of photodarkening mitigation in Yb-doped fiber lasers by low power 405 nm radiation[J]. IEEE Photonics Technology Letters, 2013, 26(1): 50-53.

[29] Piccoli R, Robin T, Brand T, et al. Effective photodarkening suppression in Yb doped fiber lasers by visible light injection[J]. Optics Express, 2014, 22(7): 7638-7643.

[30] Gebavi H, Taccheo S, Lablonde L, et al. Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure[J]. Optics Letters, 2013, 38(2): 196-198.

[31] Zhao N, Xing Y B, Li J M, et al. 793 nm pump induced photo-bleaching of photodarkened Yb3+-doped fibers[J]. Optics Express, 2015, 23(19): 25272-25278.

[32] Jasapara J, Andrejco M, Digiovanni D, et al. Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers[C]. CLEO, 2006: CTuQ5.

[33] Basu C, Yoo S, Boyland A J, et al. Influence of temperature on the post-irradiation temporal loss evolution in Yb-doped aluminosilicate fibers, photodarkened by 488 nm CW irradiation[C]. CLEO, 2009.

[34] Leich M, Rpke U, Jetschke S, et al. Non-isothermal bleaching of photodarkened Yb-doped fibers[J]. Optics Express, 2009, 17(15): 12588-12593.

[35] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.

[36] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96.

[37] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192.

[38] Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(12): 12912-12925.

[39] Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode-instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 2012, 20(14): 15710-15722.

[40] Wirth C, Schreiber T, Rekas M, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier[C]. SPIE, 2010, 7580: 75801H.

[41] Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 2012, 20(10): 11407-11422.

[42] Dong L, Peng X, Li J. Leakage channel optical fibers with large effective area[J]. Journal of the Optical Society of America B, 2007, 24(8): 1689-1697.

[43] Dong L, Wu T W, Mckay H A, et al. All-glass large-core leakage channel fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 47-53

[44] Liu C H, Chang G q, Litchinitser N, et al. Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling[C]. CLEO, 2007: CTuBB3.

[45] Craig Swan M, Liu C H, Guertin D, et al. 33 μm core effectively single mode chirally coupled core fiber laser at 1064-nm[C]. OFC/NFOEC, 2008: OWU2.

[46] Karow M, Zhu C, Kracht D, et al. Fundamental Gaussian mode content measurements on active large core CCC fibers[C]. CLEO EUROPE/IQEC, 2013.

[47] Wang Y B, Liao L, Zhao N, et al. Experimental demonstration of optical fiber laser with octagonal-shaped core[J]. Applied Physics A, 2015, 119(2): 791-794.

[48] Wang Y B, Nan Z, Lei L, et al. A new type of Yb3+ doped fiber with an octagonal-shaped core[C]. CLEO, 2015: JTh2A.26.

[49] Otto H J, Jauregui C, Stutzki F. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector[J]. Optics Express, 2013, 21(14): 17285-17298.

王一礴, 李进延. 高功率掺镱光纤的现状及发展趋势[J]. 中国激光, 2017, 44(2): 0201009. Wang Yibo, Li Jinyan. Status and Development Tendency of High Power Ytterbium Doped Fibers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201009.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!