中国激光, 2017, 44 (2): 0201009, 网络出版: 2017-02-22   

高功率掺镱光纤的现状及发展趋势 下载: 1230次

Status and Development Tendency of High Power Ytterbium Doped Fibers
作者单位
华中科技大学武汉光电国家实验室, 湖北 武汉 430074
摘要
自光纤激光器问世以来,随着半导体材料与光纤制备技术的快速发展,光纤激光器的输出功率由毫瓦级提高到了万瓦级。然而,随着输出功率的增加,光纤激光器在低输出功率下未表现出的诸多现象逐渐显现,如光纤热损伤、非线性效应、模式不稳定等,这些现象限制了光纤激光器的应用,因此对掺镱光纤的质量要求越来越高。针对高功率掺镱光纤的制备工艺、掺杂组分及结构设计等方面进行了讨论,分析了高功率掺镱光纤的热稳定性、功率稳定性及模式稳定性的研究现状,并总结了其发展趋势。
Abstract
Since the emergence of fiber lasers, the output power of fiber laser has been increased from milliwatt level to myriawatt level along with the rapid development of semiconductor material and fiber fabrication technology. However, with the increasing of output power of fiber laser, many phenomenons which are not shown at a low output power have appeared gradually, such as fiber thermal damage, nonlinearity effect and mode instability, which limit the application of fiber laser. Therefore, the demand for the quality of Yb-doped fiber is higher and higher. The fabrication technologies, doping components and structural design of high power Yb-doped fibers are discussed. The status and development tendency of thermal stability, power stability and mode stability of high power Yb-doped fiber are analyzed.
参考文献

[1] Snitzer E. Proposed fiber cavities for optical lasers[J]. Journal of Applied Physics, 1961, 32: 36-39.

[2] Snitzer E. Optical maser action of Nd3+ in a barium crown glass[J]. Physical Review Letters, 1961, 7(12): 444-446.

[3] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186.

[4] Poole S B, Payne D N, Fermann M E. Fabrication of low-loss optical fibres containing rare-earth ions[J]. Electronics Letters, 1985, 21(17): 737-738.

[5] Mears R J, Reekie L, Poole S B, et al. Neodymium-doped silica single mode fibre lasers[J]. Electronics Letters, 1985, 21(17): 738-740.

[6] Jeong Y, Sahu J, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092.

[7] 光纤激光器的输出功率日益提升[OL]. [2016-09-12]. http://www.newmaker.com/art_36629.html.

[8] Sekiya E H, Barua P, Saito K, et al. Fabrication of Yb-doped silica glass through the modification of MCVD process[J]. Journal of Non-Crystalline Solids, 2008, 354(42): 4737-4742.

[9] Petita V, Sekiya E H, Okazakia T, et al. Improvement of Yb3+ doped optical fiber preforms by using MCVD method[C]. SPIE, 2008, 6998: 69980A.

[10] Webb A S, Boyland A J, Standish R J, et al. MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers[J]. Journal of Non-Crystalline Solids, 2010, 356(18-19): 848-851.

[11] Leich M, Just F, Langner A, et al. Highly efficient Yb-doped silica fibers prepared by powder sinter technology[J]. Optics Letters, 2011, 36(9): 1557-1559.

[12] Yoo S, Basu C, Boyland A J, et al. Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation[J]. Optics Letters, 2007, 32(12): 1626-1628.

[13] Dragic P D, Carlson D C, Croteau A. Characterization of defect luminescence in Yb doped silica fibers: Part I NBOHC[J]. Optics Express, 2008, 16(7): 4688-4697.

[14] Dragic P D, Liu Y S, Galvin T C, et al. Ultraviolet absorption and excitation spectroscopy of rare-earth-doped glass fibers derived from glassy and crystalline performs[C]. SPIE, 2012, 8237: 82370T.

[15] Engholm M, Norin L, Aberg D. Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation[J]. Optics Letters, 2007, 32(22): 3352-3354.

[16] Engholm M, Norin L. Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass[J]. Optics Express, 2008, 16(2): 1260-1268.

[17] Engholm M, Norin L. Comment on “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation”[J]. Optics Letters, 2008, 33(11): 1216.

[18] Guzman Chávez A D, Kir′yanov A V, Barmenkov Y O, et al. Reversible photo-darkening and resonant photo-bleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation[J]. Laser Physics Letters, 2007, 4(10): 734-739.

[19] Kitabayashi T, Ikeda M, Nakai M, et al. Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping[C]. CLEO, 2006: OThC5.

[20] Morasse B, Chatigny B, Gagnon E, et al. Low photodarkening single cladding ytterbium fibre amplifier[C]. SPIE, 2007, 6453: 64530H.

[21] Shubin A V, Yashkov M V, Melkumov M A, et al. Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers[C]. CLEO, 2007: CJ3-1-THU.

[22] Peretti R, Jurdyc A M, Jacquier B, et al. How do traces of thulium explain photodarkening in Yb doped fibers [J]. Optics Express, 2010, 18(19): 20455-20460.

[23] Jetschke S, Unger S, Schwuchow A, et al. Evidence of Tm impact in low-photodarkening Yb-doped fibers[J]. Optics Express, 2013, 21(6): 7590-7598.

[24] Jetschke S, Unger S, Schwuchow A, et al. Efficient Yb laser fibers with low photodarkening by optimization of the core composition[J]. Optics Express, 2008, 16(20): 15540-15545.

[25] Engholm M, Jelger P, Laurell F, et al. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping[J]. Optics Letters, 2009, 34(8): 1285-1287.

[26] Engholm M, Norin L. Ytterbium-doped fibers co-doped with cerium: next generation of fibers for high power fiber lasers [C]. SPIE, 2010, 7580: 758008.

[27] Hnninger I M, Boullet J, Cardinal T, et al. Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber[J]. Optics Express, 2007, 15(4): 1606-1611.

[28] Piccoli R, Gebavi H, Lablonde L, et al. Evidence of photodarkening mitigation in Yb-doped fiber lasers by low power 405 nm radiation[J]. IEEE Photonics Technology Letters, 2013, 26(1): 50-53.

[29] Piccoli R, Robin T, Brand T, et al. Effective photodarkening suppression in Yb doped fiber lasers by visible light injection[J]. Optics Express, 2014, 22(7): 7638-7643.

[30] Gebavi H, Taccheo S, Lablonde L, et al. Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure[J]. Optics Letters, 2013, 38(2): 196-198.

[31] Zhao N, Xing Y B, Li J M, et al. 793 nm pump induced photo-bleaching of photodarkened Yb3+-doped fibers[J]. Optics Express, 2015, 23(19): 25272-25278.

[32] Jasapara J, Andrejco M, Digiovanni D, et al. Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers[C]. CLEO, 2006: CTuQ5.

[33] Basu C, Yoo S, Boyland A J, et al. Influence of temperature on the post-irradiation temporal loss evolution in Yb-doped aluminosilicate fibers, photodarkened by 488 nm CW irradiation[C]. CLEO, 2009.

[34] Leich M, Rpke U, Jetschke S, et al. Non-isothermal bleaching of photodarkened Yb-doped fibers[J]. Optics Express, 2009, 17(15): 12588-12593.

[35] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.

[36] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96.

[37] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192.

[38] Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(12): 12912-12925.

[39] Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode-instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 2012, 20(14): 15710-15722.

[40] Wirth C, Schreiber T, Rekas M, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier[C]. SPIE, 2010, 7580: 75801H.

[41] Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 2012, 20(10): 11407-11422.

[42] Dong L, Peng X, Li J. Leakage channel optical fibers with large effective area[J]. Journal of the Optical Society of America B, 2007, 24(8): 1689-1697.

[43] Dong L, Wu T W, Mckay H A, et al. All-glass large-core leakage channel fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 47-53

[44] Liu C H, Chang G q, Litchinitser N, et al. Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling[C]. CLEO, 2007: CTuBB3.

[45] Craig Swan M, Liu C H, Guertin D, et al. 33 μm core effectively single mode chirally coupled core fiber laser at 1064-nm[C]. OFC/NFOEC, 2008: OWU2.

[46] Karow M, Zhu C, Kracht D, et al. Fundamental Gaussian mode content measurements on active large core CCC fibers[C]. CLEO EUROPE/IQEC, 2013.

[47] Wang Y B, Liao L, Zhao N, et al. Experimental demonstration of optical fiber laser with octagonal-shaped core[J]. Applied Physics A, 2015, 119(2): 791-794.

[48] Wang Y B, Nan Z, Lei L, et al. A new type of Yb3+ doped fiber with an octagonal-shaped core[C]. CLEO, 2015: JTh2A.26.

[49] Otto H J, Jauregui C, Stutzki F. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector[J]. Optics Express, 2013, 21(14): 17285-17298.

王一礴, 李进延. 高功率掺镱光纤的现状及发展趋势[J]. 中国激光, 2017, 44(2): 0201009. Wang Yibo, Li Jinyan. Status and Development Tendency of High Power Ytterbium Doped Fibers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201009.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!