红外与激光工程, 2016, 45 (12): 1211001, 网络出版: 2017-01-12   

非Kolmogorov大气湍流随机相位屏模拟

Simulation of random phase screen of non-Kolmogorov atmospheric turbulence
作者单位
中国科学院安徽光学精密机械研究所 大气成分与光学重点实验室, 安徽 合肥 230031
摘要
介绍了功率谱法、Zernike多项式法、分形法模拟生成非Kolmogorov湍流相位屏的过程, 并利用这三种方法对符合非Kolmogorov统计特征的大气湍流相位屏进行了模拟。将不同方法得到的相位屏的相位结构函数与理论结构函数进行对比, 分析了三种相位屏模拟方法的准确性和模拟速度。结果表明: 添加次谐波和增加Zernike多项式阶数分别可以弥补功率谱法和Zernike多项式法生成的相位屏低频和高频不足的缺点, 但导致模拟效率下降; 分形法生成的湍流相位屏高频和低频都较为充足, 且模拟效率较高; 随着非Kolmogorov湍流谱幂率的增加, 功率谱法所需要的次谐波级数增加, Zernike多项式法所需要的Zernike多项式的阶数减少, 分形法生成的相位屏的精度更高。
Abstract
The methods of power spectrum, Zernike polynomial and Fractal used to generate atmospheric phase screens with the non-Kolmogorov statistics were introduced. Based on the three methods, non-Kolmogorov turbulent phase screens were simulated. Phase structure functions were calculated and compared with the theoretical results. In addition, the accuracy and efficiency of different methods were also analyzed. It shows that phase screen created by FFT method has the drawback of lacking low frequency, by adding subharmonics the phase screen can be compensated which also leading to the decreasing of simulation efficiency; phase screen created by Zernike polynomial method has the drawback of lacking high frequency, by using much more orders of Zernike polynomials the phase screen can be compensated which also leading to the decreasing of simulation efficiency; phase screen created by Fractal method is relatively good at both low and high frequency and the simulation efficiency is also high. In addition, the number of subharmonics and the order of Zernike polynomials under same condition of accuracy are related to the power law of non-Kolmogorov turbulent spectrum. As the spectral power law increases, the number of subharmonics increase and the order of Zernike polynomials decrease, and phase screens created by fractal method are more accurate.
参考文献

[1] 向宁静, 吴振森, 王明军. 部分相干高斯-谢尔光束在大气湍流中的展宽与漂移[J]. 红外与激光工程, 2013, 42(3): 658-662.

    Xiang Ningjing, Wu Zhensen, Wang Mingjun. Spreading and wander of Gaussian-Schell model beam propagation through atmospheric turbulence[J]. Infrared and Laser Engineering, 2013, 42(3): 658-662. (in Chinese)

[2] 钱仙妹, 朱文越, 饶瑞中. 湍流谱中高频“泵浦”对激光大气传输影响的数值模拟研究[J]. 红外与激光工程, 2006, 35(S): 432-436.

    Qian Xianmei, Zhu Wenyue, Rao Ruizhong. Simulation of effect of a high-frequency bump in the turbulence spectrum on laser propagation[J]. Infrared and Laser Engineering, 2006, 35(S): 432-436. (in Chinese)

[3] Korotkova O. Intensity and power statistics of laser and random beams in Non-Kolmogorov turbulence[C]//Imaging and Applied Optics, 2014: 2.

[4] 蔡冬梅, 王昆, 贾鹏, 等. 功率谱反演大气湍流随机相位屏采样方法的研究[J]. 物理学报, 2014, 63(10): 104217.

    Cai Dongmei, Wang Kun, Jia Peng, et al. Sampling methods of power spectral density method simulating atmospheric turbulence phase screen[J]. Acta Physica Sinica, 2014, 63(10): 104217. (in Chinese)

[5] Nicolas Roddier. Atmospheric wavefront simulation using Zernike polynomials[J]. Opt Engineering, 1990, 129(10): 1174-1179.

[6] 王奇涛, 佟首峰, 徐友会. 采用Zernike 多项式对大气湍流相位屏的仿真和验证[J]. 红外与激光工程, 2013, 42(7): 1907-1911.

    Wang Qitao, Tong Shoufeng, Xu Youhui. On simulation and verification of the atmospheric turbulent phase screen with Zernike polynomials[J]. Infrared and Laser Engineering, 2013, 42(7): 1907-1911. (in Chinese)

[7] 吴晗玲, 严海星, 李新阳. 基于畸变相位波前分形特征产生矩形湍流相位屏[J]. 光学学报, 2009, 129(1): 114-119.

    Wu Hanling, Yan Haixing, Li Xinyang. Generation of rectangular turbulence phase screens based on fractal characteristics of distorted wavefront[J]. Acta Optica Sinica, 2009, 129(1): 114-119. (in Chinese)

[8] Szymon Gladysz, Karin Stein, Erik Sucher, et al. Measuring non-Kolmogorov turbulence[J]. SPIE, 2013, 8890: 889013.

[9] 吴晓庆, 黄印博, 梅海平, 等. 近地面层大气非 Kolmogorov 湍流特征参数测量[J]. 光学学报, 2014, 34(6): 1-6.

    Wu Xiaoqing, Huang Yinbo, Mei Haiping, et al. Measurement of non-Kolmogorov turbulence characteristic parameter in atmospheric surface layer[J]. Acta Optica Sinica, 2014, 34(6): 1-6. (in Chinese)

[10] 饶瑞中, 李玉杰. 非Kolmogorov 大气湍流中的光传播及其对光电工程的影响[J]. 光学学报, 2015, 35(5): 0501003.

    Rao Ruizhong, Li Yujie. Light propagation through non-Kolmogorov-type atmospheric turbulence and its effects on optical engineering[J]. Acta Optica Sinica, 2015, 35(5): 0501003. (in Chinese)

[11] Tatarskii V I. Wave Propagation in a Turbulent Medium[M]. Beijing: Science Press, 1978.

[12] 饶瑞中. 现代大气光学[M]. 北京: 科学出版社, 2012.

    Rao Ruizhong. Modern Atmospheric Optics[M]. Beijing: Science Press, 2012. (in Chinese)

[13] Stribling B E, Welsh B M, Roggemann M C. Optical propagation in non-Kolmogorov atmospheric turbulence[J]. SPIE, 1995, 2471: 181-196.

[14] Lane R G, Glindemann A, Dainty J C. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 1992, 2(3): 209-224.

李玉杰, 朱文越, 饶瑞中. 非Kolmogorov大气湍流随机相位屏模拟[J]. 红外与激光工程, 2016, 45(12): 1211001. Li Yujie, Zhu Wenyue, Rao Ruizhong. Simulation of random phase screen of non-Kolmogorov atmospheric turbulence[J]. Infrared and Laser Engineering, 2016, 45(12): 1211001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!