激光与光电子学进展, 2015, 52 (4): 043001, 网络出版: 2015-04-03   

光谱法测量低压热喷涂等离子体的电子温度和电子密度 下载: 1183次

Spectroscopic Method for Measuring Electron Temperature and Electron Density of Thermal Spray Plasma
作者单位
1 大连海事大学交通运输装备与海洋工程学院, 辽宁 大连 116026
2 广东海洋大学航海学院, 广东 湛江 524088
摘要
发射光谱研究是热喷涂等离子体诊断的一种重要的方法。通过使用发射光谱测量氩原子在763.51 nm 和772.42 nm 处谱线辐射强度的信息,采用双谱线法计算低压热喷涂等离子体射流的电子温度,研究氩气流量40 L/min、氢气流量15 L/min,不同的弧电流和不同的探测距离条件下,低压热喷涂等离子体射流中电子温度的变化情况。通过使用Hβ 谱线的Stark 展宽计算热喷涂等离子体射流的电子密度,研究不同探测距离对电子密度的影响。结果表明,电子温度随等离子体功率的增加而增加,同时也发现随着距喷枪出口轴向探测距离的增加(150~450 mm),电子温度逐渐减小;当探测距离从100 mm 增加时等离子体的电子密度显著下降,随后,电子密度变化不大。
Abstract
Emission spectroscopy is an important method for plasma diagnostics. The intensity ratio of spectrum lines at 763.51 nm and 772.42 nm is used to estimate the electron excited temperature of the thermal plasma jet under the low pressure plasma spray. Impact of different power levels and detection distance on the electron temperature in the thermal spray plasma jet under Ar/H2 flow rate of 40 L/min/15 L/min is investigated. Electron number density of the plasma jet is determined using stark broadening of Hβ , impact of changes of the detection distance is also studied. An increase in input power considerably increases the electron temperature, while it is found that electron temperature decreases with detection distance from nozzle exit increasing from 150 mm to 450 mm, and the increase of detection distance from l00 mm can remarkably reduce the electron number density. After that, there is little change of electron number density.
参考文献

[1] L Pawlowski. The Science and Engineering of Thermal Spray Coatings [M]. France: John Wiley & Sons, 2008: 301-325.

[2] Y Gao, D Yang, J Gao. Characteristics of a plasma torch designed for very low pressure plasma spraying [J]. Journal of Thermal Spray Technology, 2012, 21(3-4): 740-744.

[3] D Yang, B Tian, Y Gao. The lamellar- equiaxed microstructural transition of 316L coatings by low pressure plasma spraying [J]. Surface & Coatings Technology, 2013, 228: S72-S76.

[4] 陈熙. 热等离子体的传热与流动[M]. 北京: 科学出版社, 2009: 34-43.

    Chen Xi. Heat Transfer and Flow in Thermal Plasma [M]. Beijing: Science Press, 2009: 34-43.

[5] M Gindrat. Characterization of Supersonic Low Pressure Plasma Jets [D]. Lausanne: Swiss Federal Institute of Technology, 2004: 97-128.

[6] 李永辉, 董丽芳. 大气压射流等离子体温度空间分布[J]. 光学学报, 2013, 33(4): 0430003.

    Li Yonghui, Dong Lifang. Spatial distribution of atmospheric plasma jet temperature [J]. Acta Optica Sinica, 2013, 33(4): 0430003.

[7] M Rajabian, D V Gravelle, S Vacquie. Measurements of temperatures and electron number density in an argon-nitrogen plasma jet generated by a dc torch- operation close to supersonic threshold [J]. Plasma Chemistry and Plasma Processing, 2004, 24(2): 261-284.

[8] N Zhang, F Sun, L Zhu, et al.. Electron temperature and density of the plasma measured by optical emission spectroscopy in VLPPS conditions [J]. Journal of Thermal Spray Technology, 2011, 20(6): 1321-1327.

[9] 李霞芬, 周卫东, 钱惠国, 等. 激光烧蚀脉冲放电激发的土壤等离子体电子数密度和温度的研究[J]. 光学学报, 2011, 31(11): 1130001.

    Li Xiafen, Zhou Weidong, Qian Huiguo, et al.. Electron temperature and density of soil plasma generated by laser ablation fast pulse discharge spectroscopy [J]. Acta Optica Sinica, 2011, 31(11): 1130001.

[10] X Zhou, Y Li, J Wang, et al.. The temperature measurement of the electrothermal-chemical launcher plasma by atomic emission spectroscopy [J]. Plasma Science, 2001, 29(2): 360-364.

[11] 董丽芳, 仝国良, 张玉, 等. 大面积沿面放电等离子体温度的光谱研究[J]. 光谱学与光谱分析, 2014, 34(4): 919-921.

    Dong Lifang, Tong Guoliang, Zhang Yu, et al.. Study on plasma temperature of a large area surface discharge by optical emission spectrum [J]. Spectroscopy and Spectral Analysis, 2014, 34(4): 919-921.

[12] S Semenov, B Cetegen. Spectroscopic temperature measurements in direct current arc plasma jets used in thermal spray processing of materials [J]. Journal of Thermal Spray Technology, 2001, 10(2): 326-336.

[13] 徐伟, 万宝年. 光谱法测量等离子体离子温度和旋转速度[J]. 光学学报, 2003, 23(9): 1115-1118.

    Xu Wei, Wan Baonian. Spectroscopic method for measurement of plasma ion temperature and rotation velocity [J]. Acta Optica Sinica, 2003, 23(9): 1115-1118.

[14] 李廷钧. 发射光谱分析[M]. 北京: 原子能出版社, 1983: 21-45.

    Li Tingjun. Emission Spectroscopy Analysis [M]. Beijing: Atomic Energy Press, 1983: 21-45.

[15] S Yugeswaran, V Selvarajan. Electron number density measurement on a DC argon plasma jet by stark broadening of Ar I spectral line [J]. Vacuum, 2006, 81(3): 347-352.

[16] N K Joshi, S N Sahasrabudhe, K P Sreekumar, et al.. Axial variation of electron number density in thermal plasma spray jets [J]. European Physical Journal D, 2003, 26: 215-219.

孙成琪, 高阳, 杨德明, 何坤. 光谱法测量低压热喷涂等离子体的电子温度和电子密度[J]. 激光与光电子学进展, 2015, 52(4): 043001. Sun Chengqi, Gao Yang, Yang Deming, He Kun. Spectroscopic Method for Measuring Electron Temperature and Electron Density of Thermal Spray Plasma[J]. Laser & Optoelectronics Progress, 2015, 52(4): 043001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!