激光与光电子学进展, 2017, 54 (10): 100005, 网络出版: 2017-10-09   

光子集成混沌激光器的研究进展 下载: 760次

Research Progress of the Photonic Integrated Chaotic Lasers
王永胜 1,2,*王云才 1,2郭龑强 1,2
作者单位
1 太原理工大学物理与光电工程学院, 山西 太原 030024
2 新型传感器与智能控制教育部和山西省重点实验室, 山西 太原 030024
摘要
近年来, 混沌激光已广泛应用于保密通信、高速随机数生成、混沌激光雷达、混沌光时域反射仪、光纤传感和测距等方面。与离散器件构成的装置不同, 集成芯片具有尺寸较小、功耗较低、稳定性较好和适用于大批量生产等优点。结合混沌应用和集成芯片的优势, 光子集成的混沌半导体激光器应运而生。将光子集成混沌半导体激光器分为五类, 并分别介绍了国内外相关机构在集成结构、集成区域的尺寸、集成构成的特点及集成混沌激光器的应用等方面的研究进展。另外, 设计并介绍了一种新型的面向蝶形封装的混沌外腔半导体激光器。
Abstract
The chaos laser has received in-depth investigation in recent years owing to its important applications, such as secure communications, fast physical random bit generation, chaotic laser radar, chaotic time domain reflectometer, optical fiber sensing and ranging. The integrated chips have advantages over those setups composed of discrete components for some unique virtues such as smaller size, lower cost, better stability and reproducibility via mass production. Combining with the advantages of the chaotic applications and integrated chips, the integration of chaotic semiconductor laser arises at the historic moment. The integration of chaotic semiconductor laser is divided into five categories to introduce the domestic and oversea research progress of the relevant institutions in the respect of integrated structure, size of the integrated area, features of integration and applications of integrated chaotic laser. Finally, we design a novel butterfly packaging integrated chaotic semiconductor laser with an external-cavity.
参考文献

[1] 王云才. 混沌激光的产生与应用[J]. 激光与光电子学进展, 2009, 46(4): 13-21.

    Wang Yuncai. Generation and applications of chaotic laser[J]. Laser & Optoelectronics Progress, 2009, 46(4): 13-21.

[2] Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 2015, 9(3): 151-162.

[3] Argyris A, Syvridis D, Larger L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 438(7066): 343-346.

[4] Soriano M C, García-Ojalvo J, Mirasso C R, et al. Complex photonics: dynamics and applications of delay-coupled semiconductors lasers[J]. Review of Modern Physics, 2013, 85(1): 421-470.

[5] 赵清春, 王云才. 混沌激光通信的保密性能研究进展[J]. 激光与光电子学进展, 2010, 47(3): 030602.

    Zhao Qingchun, Wang Yuncai. Research progress in security analysis of chaotic optical communication[J]. Laser & Optoelectronics Progress, 2010, 47(3): 030602.

[6] Uchida A, Amano K, Inoue M, et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2008, 2(12): 728-732.

[7] Reidler I, Aviad Y, Rosenbluh M, et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser[J]. Physical Review Letters, 2009, 103(2): 024102.

[8] 李璞, 王云才. 面向高速保密通信的激光混沌物理随机数发生器研究进展[J]. 激光与光电子学进展, 2014, 51(6): 060002.

    Li Pu, Wang Yuncai. Research progress in physical random number generator based on laser chaos for high-speed secure communication[J]. Laser & Optoelectronics Progress, 2014, 51(6): 060002.

[9] 鄢秋荣, 曹青山, 赵宝升, 等. 基于数字化带宽增强混沌激光信号的高速随机源[J]. 中国激光, 2015, 42(11): 1102004.

    Yan Qiurong, Cao Qingshan, Zhao Baosheng, et al. High speed random number generator based on digitizing bandwidth-enhanced chaotic laser signal[J]. Chinese J Lasers, 2015, 42(11): 1102004.

[10] Lin F Y, Liu J M. Chaotic lidar[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 991-997.

[11] Wang A, Wang N, Yang Y, et al. Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser[J]. Journal of Lightwave Technology, 2012, 30(21): 3420-3426.

[12] Wang Y, Wang B, Wang A. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1636-1638.

[13] Harayama T, Sunada S, Yoshimura K, et al. Fast nondeterministic random-bit generation using on-chip chaos lasers[J]. Physical Review A, 2011, 83(3): 031803.

[14] Takahashi R, Akizawa Y, Uchida A, et al. Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation[J]. Optics Express, 2014, 22(10): 11727-11740.

[15] Yu L, Lu D, Pan B, et al. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation[J]. Journal of Lightwave Technology, 2014, 32(20): 3595-3601.

[16] Pan B, Lu D, Zhao L. Broadband chaos generation using monolithic dual-mode laser with optical feedback[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2516-2519.

[17] Argyris A, Hamacher M, Chlouverakis K E, et al. Photonic integrated device for chaos applications in communications[J]. Physical Review Letters, 2008, 100(19): 194101.

[18] Chlouverakis K E, Argyris A, Bogris A, et al. Hurst exponents and cyclic scenarios in a photonic integrated circuit[J]. Physical Review E, 2008, 78(6): 066215.

[19] Syvridis D, Argyris A, Bogris A, et al. Integrated devices for optical chaos generation and communication applications[J]. IEEE Journal of Quantum Electronics, 2009, 45(11): 1421-1428.

[20] Argyris A, Grivas E, Hamacher M, et al. Chaos-on-a-chip secures data transmission in optical fiber links[J]. Optics Express, 2010, 18(5): 5188-5198.

[21] Argyris A, Deligiannidis S, Pikasis E, et al. Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit[J]. Optics Express, 2010, 18(18): 18763-18768.

[22] Bogris A, Argyris A, Syvridis D. Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits[J]. IEEE Journal of Quantum Electronics, 2010, 46(10): 1421-1429.

[23] Liu C, Di Falco A, Molinari D, et al. Enhanced energy storage in chaotic optical resonators[J]. Nature Photonics, 2013, 7(6): 473-478.

[24] Sunada S, Shinohara S, Fukushima T, et al. Signature of wave chaos in spectral characteristics of microcavity lasers[J]. Physical Review Letters, 2016, 116(20): 203903.

[25] Kapsalis A, Stamataki I, Mesaritakis C, et al. Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties[J]. IEEE Journal of Quantum Electronics, 2011, 47(12): 1557-1564.

[26] Kapsalis A, Stamataki I, Mesaritakis C, et al. Design and experimental evaluation of active-passive integrated microring lasers: noise properties[J]. IEEE Journal of Quantum Electronics, 2012, 48(2): 99-106.

[27] Toomey J P, Kane D M, McMahon C, et al.Integrated semiconductor laser with optical feedback: transition from short to long cavity regime[J]. Optics Express, 2015, 23(14): 18754-18762.

[28] Sunada S, Harayama T, Arai K, et al. Chaos laser chips with delayed optical feedback using a passive ring waveguide[J]. Optics Express, 2011, 19(7): 5713-5724.

[29] Harayama T, Sunada S, Yoshimura K, et al. Theory of fast nondeterministic physical random-bit generation with chaotic lasers[J]. Physical Review E, 2012, 85(4): 046215.

[30] Sunada S, Shinohara S, Fukushima T, et al. Signature of wave chaos in spectral characteristics of microcavity lasers[J]. Physical Review Letters, 2016, 116(20): 203903.

[31] Tronciu V Z, Mirasso C R, Colet P. Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41(15): 155401.

[32] Tronciu V Z, Mirasso C, Colet P, et al. Chaos generation, synchronization and communications using an integrated source with an air gap[C]. European Conference on Lasers and Electro-Optics, 2009: CB_P27.

[33] Tronciu V Z, Mirasso C R, Colet P, et al. Chaos generation and synchronization using an integrated source with an air gap[J]. IEEE Journal of Quantum Electronics, 2010, 46(12): 1840-1846.

[34] Wu J G, Zhao L J, Wu Z M, et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip[J]. Optics Express, 2013, 21(20): 23358-23364.

[35] Yin X M, Zhong Z Q, Zhao L J, et al. Wide bandwidth chaotic signal generation in a monolithically integrated semiconductor laser via optical injection[J]. Optics Communications, 2015, 355: 551-557.

[36] Zhu W Q, Wu Z M, Zhong Z Q, et al. Dynamics of a monolithically integrated semiconductor laser under optical injection[J]. IEEE Photonics Technology Letters, 2015, 27(20): 2119-2122.

[37] Liu D, Sun C, Xiong B, et al. Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation[J]. Optics Express, 2013, 21(2): 2444-2451.

[38] Liu D, Sun C, Xiong B, et al. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay[J]. Optics Express, 2014, 22(5): 5614-5622.

[39] Dou X, Yin H, Tang C, et al. Structure design and performance simulation on monolithic integrated chaotic-optical transmitter with photonic crystal waveguide in external cavity[J]. Optik-International Journal for Light and Electron Optics, 2014,125(15): 3961-3965.

王永胜, 王云才, 郭龑强. 光子集成混沌激光器的研究进展[J]. 激光与光电子学进展, 2017, 54(10): 100005. Wang Yongsheng, Wang Yuncai, Guo Yanqiang. Research Progress of the Photonic Integrated Chaotic Lasers[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!