半导体光子学与技术, 2007, 13 (4): 256, 网络出版: 2011-08-18   

Supercontinuum Generation in Normal-dispersion Photonic Crystal Fiber Using Picosecond Pulse

Supercontinuum Generation in Normal-dispersion Photonic Crystal Fiber Using Picosecond Pulse
作者单位
Key Laboratory of Optical Communication and Lightwave Technologies, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, CHN
摘要
Abstract
Studied is the Super-continuum(SC) generation of a normal-dispersion photonic crystal fiber (PCF) using picosecond pulse excitation. In experimental analyses, a 237 nm broadband infrared continuum was generated pumped at 1 550 nm(normal dispersion regime) by 1.6 ps pulses from an erbium-doped fiber laser. In addition, we conduct the numerical analyses of SC based on generalized nonlinear Schr dionger equation. The results have been applied to investigate the dominant physical processes underlie the generation of SC. We conclude that dispersion, self-phase modulation(SPM), four-wave-mixing(FWM) and Raman scattering are determinants of SC generation rather than fission of soliton in normal-dispersion PCF.
参考文献

[1] Yusoff Z, Petropoulos P, Furusawa K, et al. A 36-channel×10 GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber[J]. IEEE Photonics Technology Letters, 2003, 15(12): 1 689-1 691.

[2] Andersen P A, Peucheret C, Hilligsoe K M, et al. Supercontinuum generation in a photonic crystal fibre using picosecond pulses at 1 550 nm[J]. Proceedings of 2003 5-th International Conference on Transparent Optical Networks, 2003, 1(29): 66-69.

[3] Dudley J M, Provino L, Grossard N, et al. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping[J]. Opt.Soc.Am.B, 2002, 19(4): 765-770.

[4] Herrmann J, Griebrer D, et al. Experimental evidence for supercontinuum generation by fission of higher order soliton in photonic crystal fibers[J]. Phys.Rev.Lett., 2002, 88: 173901.

[5] Brechet F, Marcou J, Pagnoux D, et al. Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method[J]. Opt.Fiber Technol.Mater.Devices Syst., 2000, 6: 181-191.

[6] Agrawal G P. Nonlinear Fiber Optics[M]. San Diego: Academic Press, 2001.

[7] Golovchenko E A, Pilipetskii A N. Unified analysis of four photon mixing, modulational instability and stimulated Raman scattering under various polarization conditions in fibers[J]. J.Opt.Soc.Am.B, 1994, 11: 92-101.

[8] Chernikov S V, Mamyshev P V. Femtosecond soliton propagation in fibers with slowly decreasing dispersion[J]. J.Opt. Soc.Am.B, 1991, 8: 1 633-1 641.

[9] Nakatsuka H, Grischkowsky D, Balant A C. Nonlinear picosecond pulse propagation through optical fibers with positive group velocity dispersion[J]. Phys.Rev.Lett., 1981, 47: 910.

YAO Li, HE Li, YANG Bo-jun. Supercontinuum Generation in Normal-dispersion Photonic Crystal Fiber Using Picosecond Pulse[J]. 半导体光子学与技术, 2007, 13(4): 256. YAO Li, HE Li, YANG Bo-jun. Supercontinuum Generation in Normal-dispersion Photonic Crystal Fiber Using Picosecond Pulse[J]. Semiconductor Photonics and Technology, 2007, 13(4): 256.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!