强激光与粒子束, 2014, 26 (4): 043003, 网络出版: 2014-04-24  

螺旋波导压缩频率调制脉冲的初步研究

Compression of frequency-modulated pulses by helically corrugated waveguide
作者单位
北京应用物理与计算数学研究所, 北京 100088
摘要
利用螺旋波导对频率调制脉冲进行压缩可大幅度提高脉冲峰值功率。利用所编Matlab程序对螺旋波导的色散特性进行了计算和分析,获得了波纹幅度和纵向周期长度等结构参数对其色散特性的影响规律; 给出了脉冲功率压缩比的计算公式,对不同脉宽和频带宽度、不同频率调制形式的微波脉冲通过螺旋波导后的功率压缩比进行了计算和分析。计算表明: 脉冲的频率调制形式对功率压缩比影响较大; 相同频率调制形式下,脉冲长度越长,工作频带越宽,功率压缩比越高。为了获得尽可能高的功率压缩比,需对脉冲的频率变化方式进行调节,使其与螺旋波导色散特性匹配。同时还需要在高的功率压缩比和高的压缩效率之间做出权衡。计算得到,当注入脉冲的脉宽为40 ns、工作频带为8.8~9.5 GHz、频率调制形式与螺旋波导色散特性匹配时,功率压缩比达到了15,压缩效率约为40%。
Abstract
The peak power of a frequency-modulated microwave pulse could be improved greatly by the compression of the helically corrugated waveguide. Firstly, the dispersion relations of the helical corrugated waveguide are calculated and analyzed using the code programmed with Matlab. The dispersion characteristics on the variation of the amplitude and period of the corrugation are obtained. Then the power compression ratios are calculated under some typical conditions. Calculation results show that: the power compression ratio is very sensitive to the format of the frequency modulation. Under the same format of frequency modulation, the power compression ratio increases with the increasing of the time width and frequency width of the input pulse. For an input pulse of 40 ns and a frequency width 0.7 GHz(from 8.8 GHz to 9.5 GHz), the format of the frequency modulation is matched to the dispersion characteristics of the helically corrugated waveguide, the power compression ratio reaches 15, and the compression efficiency is about 40%.
参考文献

[1] Thumm M K, Kasparek W. Passive high-power microwave components[J]. IEEE Trans on Plasma Sci, 2002, 30(3): 755-786.

[2] McStravick M, Samsonov S V, Ronald K, et al. Experimental results on microwave pulse compression using helically corrugated waveguide[J]. Journal of Applied Physics, 2010, 108: 054908.

[3] Bratman V L, Denisov G G, Kolganov N G, et al. Generation of 3 GW microwave pulses in X-band from a combination of a relativistic backward-wave oscillator and a helical-waveguide compressor[J]. Physics of Plasmas, 2010, 17: 110703.

[4] 令钧溥, 贺军涛, 张建德, 等. 螺旋波纹波导被动式脉冲压缩模拟研究[J]. 强激光与粒子束, 2012, 24(3): 752-756. ( Ling Junpu, He Juntao, Zhang Jiande, et al. Simulation study on passive compression using helically corrugated waveguide. High Power Laser and Particle Beams, 2012, 24(3): 752-756)

[5] 薛智浩, 刘濮鲲, 杜潮海. Ka波段螺旋波纹波导回旋行波管[J]. 强激光与粒子束, 2012, 24(5): 1013-1014. (Xue Zhihao, Liu Pukun, Du Chaohai. Linear calculation of Ka-band gyro-TWT with helical waveguide. High Power Laser and Particle Beams, 2012, 24(5): 1013-1014)

[6] Denisov G G, Bratman V L, Phelps A D R, et al. Gyro-TWT with a helical operating waveguide: New possibilities to enhance efficiency and frequency bandwidth[J]. IEEE Trans on Plasma Sci, 1998, 26(3): 508-518.

[7] Burt G, Samsonov S V, Ronald K, et al. Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study[J]. Physical Review E, 2004, 70: 046402.

[8] Samsonov S V, Phelps A D R, Bratman V L, et al. Compression of frequency-modulated pulses using helically corrugated waveguides and its potential for generating multigigawatt rf radiation[J]. Physical Review Letters, 2004, 92: 118301.

[9] Bratman V L, Denisov G G, Samsonov S V, et al. Method for achievement of a multigigawatt peak power by compressing microwave pulses of a relativistic backward-wave oscillator in a helical waveguide[J]. Radiophysics and Quantum Electronics, 2007, 50(1): 36-48.

杨温渊, 周海京, 董志伟, 董烨. 螺旋波导压缩频率调制脉冲的初步研究[J]. 强激光与粒子束, 2014, 26(4): 043003. Yang Wenyuan, Zhou Haijing, Dong Zhiwei, Dong Ye. Compression of frequency-modulated pulses by helically corrugated waveguide[J]. High Power Laser and Particle Beams, 2014, 26(4): 043003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!