Chinese Optics Letters, 2021, 19 (2): 021602, Published Online: Dec. 18, 2020  

Highly transparent ceramics for the spectral range from 1.0 to 60.0 µm based on solid solutions of the system AgBr–AgI–TlI–TlBr Download: 639次

Author Affiliations
Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg 620002, Russia
Copy Citation Text

L. V. Zhukova, D. D. Salimgareev, A. E. Lvov, A. A. Yuzhakova, A. S. Korsakov, D. A. Belousov, K. V. Lipustin, V. M. Kondrashin. Highly transparent ceramics for the spectral range from 1.0 to 60.0 µm based on solid solutions of the system AgBr–AgI–TlI–TlBr[J]. Chinese Optics Letters, 2021, 19(2): 021602.

References

[1] PalikE. D., Handbook of Optical Constants of Solids: Handbook Version 3 (Academic, 1998).

[2] GowarJ., Optical Communication Systems (Prentice Hall International, 1984).

[3] MedvinderJ. E., Fiber Optic Cables for Transmitting Information (Moscow Radio and Communications, 1983).

[4] KatsuyamaT.MatsumuraH., Infrared Optical Fibers (Mir, 1992).

[5] VoronkovaE. M.GrechushnikovB. N.DistlerG. I.PetrovI. P., Optical Materials for Infrared Technology: A Reference Publication (Nauka, 1965).

[6] WeberM. J., Handbook of Optical Materials (CRC Press, 2002).

[7] PavlychevaN. K., Optical Materials and Technologies: Textbook (Kazan Publishing House State Technical University, 2008).

[8] PolyakovaG. V.LisitskiyI. S., “Thallium and silver halides – unique optical materials for the infrared, laser, and radiation devices,” in Scientific Paper Collection Topical Problems of Contemporary Mathematical and Natural Sciences (Innovation Center for the Development of Education and Science, 2016).

[9] MayerA. A., Theory and Methods of Crystal Growth (Moscow Art Institute Named After D. I. Mendeleev, 1970).

[10] ZhukovaL. V.KorsakovA. S.SalimgareevD. D, Infrared Crystals Theory and Practice: A Textbook (UMTS UPI, 2015).

[11] A. Korsakov, L. Zhukova, E. Korsakova, E. Zharikov. Structure modeling and growing AgClxBr1−x, Ag1−xTlxBr1−xIx, and Ag1−xTlxClyIzBr1−y−z crystals for infrared fiber optics. J. Cryst. Growth, 2014, 386: 94.

[12] R. J. Frerichs. New optical glasses with good transparency in the infrarend. J. Opt. Soc. Am., 1953, 43: 1153.

[13] VinogradovaG. Z., Glass Formation and Phase Equilibria in Chalcogenide Systems (Nauka, 1984).

[14] Amorphous Materials Inc., “Chalcogenide glasses,” .

[15] V. V. Osipov, V. A. Shitov, R. N. Maksimov, K. E. Lukyashin, V. I. Solomonov, A. V. Ishchenko. Fabrication and characterization of IR-transparent Fe2+ doped MgAl2O4 ceramics. J. Am. Ceram. Soc., 2019, 102: 4757.

[16] V. V. Osipov, V. A. Shitov, K. E. Luk’Yashin, V. V. Platonov, V. I. Solomonov, A. S. Korsakov, A. I. Medvedev. Synthesis and study of Fe2+:MgAl2O4 ceramics for active elements of solid-state lasers. Quantum Electron., 2019, 49: 89.

[17] A. S. Bubnova, V. I. Solomonov. Luminescence analysis of ceramic magnesium aluminum spinel Fe2+:MgAl2O4 synthesized from nanosized powders via syntering in air and vacuum. AIP Conf. Proc., 2019, 2174: 020087.

[18] V. V. Osipov, V. A. Shitov, R. N. Maksimov, K. E. Lukyashin, V. I. Solomonov, A. V. Ishchenko. Fabrication and characterization of highly transparent Fe2+:MgAl2O4 ceramics. Proc. SPIE, 2019, 11322: 113220M.

[19] P. P. Fedorov, A. A. Luginina, A. I. Popov. Transparent oxyfluoride glass ceramics. J. Fluor. Chem., 2015, 172: 22.

[20] E. V. Kolobkova, V. G. Melekhin, A. N. Penigin. Optical glass-ceramic based on fluorine-containing silicate glasses activated by rare-earth ions. Phys. Chem. Glasses., 2007, 33: 12.

[21] I. M. Reaney Beggiora, A. B. Seddon, D. Furniss, S. A. Tikhomirova. Phase evolution in oxy-fluoride glass ceramics. J. Non-Cryst. Solids, 2003, 326–327: 476.

[22] C. Bensalem, M. Mortier, D. Vivien, M. Diaf. Optical investigation of Eu3+:PbF2 ceramics and transparent glass–ceramics. Opt. Mater., 2011, 33: 791.

[23] O. Petrova, T. Sevostjanova, A. Khomyakov, I. Avetissov. Luminescent glass-ceramics based on nanoparticles of BaxRE1-xF2+x and PbxRE1-xF2+x solid solutions into fluoroborate. Phys. Status Solidi A, 2018, 215: 1700446.

[24] PetrovaO. B., “Heterophase luminescent materials based on oxohalogen systems (RCTU named after D. I. Mendeleev),” .

[25] A. S. Korsakov, L. V. Zhukova, V. Korsakov, D. S. Vrublevskiy, D. D. Salimgareev. Research of phase equilibriums and modelling of structure of AgBr–TlBr0.46I0.54 system. Tsvetnye Metally, 2014, 8: 50.

[26] A. Korsakov, D. Salimgareev, A. Lvov, L. Zhukova. Antireflective coating for AgBr-TlI and AgBr-TlBr0.46I0.54 solid solution crystals. Opt. Mater., 2016, 62: 534.

[27] L. V. Zhukova, A. E. Lvov, A. S. Korsakov, D. D. Salimgareev, V. S. Korsakov. Domestic developments of IR optical materials based on solid solutions of silver halogenides and monovalent thallium. Opt. Spectrosc., 2018, 125: 933.

[28] A. S. Korsakov, L. V. Zhukova, A. E. L'Vov, D. D. Salimgareev, M. S. Korsakov. Crystals and light guides for the mid-infrared spectral range. J. Opt. Technol., 2017, 84: 858.

[29] A. Korsakov, L. Zhukova, D. Salimgareev, V. Zhukov. Crystals based on solid solution of Ag1-xTlxBr1-xIx for the manufacturing of IR fibers. Chin. Opt. Lett., 2015, 13: 090602.

[30] D. D. Salimgareev, A. E. Lvov, E. A. Korsakova, A. S. Korsakov, L. V. Zhukova. Crystals of AgBr–TlBr0.46I0.54 system: synthesis, structure, properties, and application. Mater. Today Commun., 2019, 20: 100551.

[31] A. S. Korsakov, A. E. Lvov, D. S. Vrublevsky, L. V. Zhukova. Investigating the light stability of solid-solution-based AgCl-AgBr and AgBr-TlI crystals. Chin. Opt. Lett., 2016, 14: 020603.

[32] A. S. Korsakov, D. S. Vrublevsky, A. E. Lvov, L. V. Zhukova. Refractive index dispersion of AgCl1-xBrx (0 ≤ x ≤ 1) and Ag1-xTlxBr1-xIx (0 ≤ x ≤ 0.05). Opt. Mater., 2017, 64: 40.

[33] A. Korsakov, D. Salimgareev, A. Lvov, L. Zhukova. IR spectroscopic determination of the refractive index of Ag1−xTlxBr1−0.54xI0.54x (0 ≤ x ≤ 0.05) crystals. Opt. Laser Technol., 2017, 93: 18.

[34] ZhukovaL. V.KorsakovA. S.LvovA. E.SalimgareevD. D., Fiber Optic Fibers for the Middle Infrared Range (UMTS UPI, 2016).

[35] ZhukovaL. V.KorsakovA. S.LashovaA. A., Modeling the Structure and Fabrication of Photonic Crystal Fibers for the Mid-infrared Range: A Textbook (UMTS UPI, 2018).

[36] E. Korsakova, A. Lvov, D. Salimgareev, A. Korsakov, S. Markham, A. Mani, C. Silien, T.A. M. Syed, L. Zhukova. Stability of MIR transmittance of silver and thallium halide optical fibres in ionizating β- and γ-radiation from nuclear reactors. Infrared Phys. Tech., 2018, 93: 171.

[37] E. A. Korsakova, A. L’vov, I. Kashuba, V. Korsakov, D. Salimgareev, A. Korsakov, L. Zhukova. Fiber-optic assemblies based on polycrystalline lightguides for the mid-IR. J. Opt., 2019, 86: 439.

[38] E. Korsakova, A. Yuzhakova, A. Lvov, D. Salimgareev, A. Korsakov, L. Zhukova. Single-mode square-grid MOFs with enlarged mode field intended for the middle infrared. Opt. Mater., 2020, 100: 109652.

[39] D. D. Salimgareev, A. A. Lashova, A. S. Shmygalev, E. A. Korsakova, B. P. Zhilkin, A. S. Korsakov, L. V. Zhukova. Influence of geometrical parameters on transmitting thermal radiation through silver halide fibers. Results Phys., 2020, 16: 102994.

[40] A. Yuzhakova, D. Salimgareev, L. Zhukova, A. Lvov, A. Korsakov. Fiber optic channel based on AgBr–TlBr0.46I0.54 fibers for receiving, transmitting and controlling infrared radiation in the range from 2.5 to 25 µm. Infrared Phys. Tech., 2020, 105: 103176.

[41] KorsakovV. S.LvovA. E.KorsakovM. S.KorsakovA. S.SalimgareevD. D.ZhukovaL. V., “AgBr–TlI crystals for medium and far IR optics (2–60 µm),” in Proceedings International Conference Laser Optics (2018), p. 385.

[42] L. V. Zhukova, N. V. Primerov, A. S. Korsakov, A. I. Chazov. AgClxBr1-x and AgClxBryI1-x-y crystals for IR engineering and optical fiber cables. Inorg. Mater., 2008, 44: 1372.

[43] A. V. Zelyanskii, L. V. Zhukova, G. A. Kitaev. Solubility of AgCl and AgBr in HCl and HBr. Inorg. Mater., 2001, 37: 523.

[44] A. S. Korsakov, D. S. Vrublevsky, V. S. Korsakov, L. V. Zhukova. Investigating the optical properties of polycrystalline AgCl1-xBrx (0 ≤ x ≤ 1) and Ag0.95Tl0.05Br0.95I0.05 for IR engineering. Appl. Opt., 2015, 54: 8004.

L. V. Zhukova, D. D. Salimgareev, A. E. Lvov, A. A. Yuzhakova, A. S. Korsakov, D. A. Belousov, K. V. Lipustin, V. M. Kondrashin. Highly transparent ceramics for the spectral range from 1.0 to 60.0 µm based on solid solutions of the system AgBr–AgI–TlI–TlBr[J]. Chinese Optics Letters, 2021, 19(2): 021602.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!