红外与激光工程, 2018, 47 (12): 1230007, 网络出版: 2019-01-10  

水汽差分吸收激光雷达发射机935 nm高功率光参量振荡器

High-power optical parametric oscillator at 935 nm for water-vapor differential absorption lidar transmitter
作者单位
1 中国科学院上海技术物理研究所 中国科学院空间主动光电技术重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
引用该论文

洪光烈, 梁新栋, 肖春雷, 孔伟, 舒嵘. 水汽差分吸收激光雷达发射机935 nm高功率光参量振荡器[J]. 红外与激光工程, 2018, 47(12): 1230007.

Hong Guanglie, Liang Xindong, Xiao Chunlei, Kong Wei, Shu Rong. High-power optical parametric oscillator at 935 nm for water-vapor differential absorption lidar transmitter[J]. Infrared and Laser Engineering, 2018, 47(12): 1230007.

参考文献

[1] Noah S Higdon, Edward V Browell, Patrick Ponsardin, et al. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols[J]. Applied Optics, 1994, 33(27): 6422-6438.

[2] Wulfmeyer V. Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter[J]. Applied Optics, 1998, 37(18): 3804-3824.

[3] Hannes Vogelmann, Thomas Trickl. Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station[J]. Applied Optics, 2008, 47(12): 2116-2132.

[4] Poberaj G, Fix A, Assio A, et al. Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy [J]. Applied Physics B, 2002, 75: 165-172.

[5] Wirth M, Fix A, Mahnke P, et al. The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance[J]. Applied Physics B, 2009, 96: 201-213.

[6] Ehret G, Fix A, Weiss V, et al. Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere [J]. Applied Physics B, 1998, 67: 427-431.

[7] Paolo Di Girolamo, Andreas Behrendt, Christoph Kiemle, et al. Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions[J]. Remote Sensing of Environment, 2008, 112: 1552-1568.

[8] Kiemle C, Wirth M, Fix A, et al. First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: accuracy evaluation and inter comparisons with other instruments [J]. Atmos Chem Phys, 2008, 8: 5245-5261.

[9] Ti Chuang, Brooke Walters, Tim Shuman, et al. Single frequency and wavelength stabilized near infrared laser transmitter for water vapor DIAL remote sensing application [C]//SPIE, 2015, 9342: 93420J.

[10] Hong Guanglie, Li Jiatang, Kong Wei, et al. 935 nm differential absorption lidar system and water vapor profiles in convective boundary layer[J]. Acta Optica Sinica, 2017, 37(2): 0201003. (in Chinese)

[11] Zhang Yunshan, Gao Chunqing, Gao Mingwei, et al. Frequency stabilization of a single-frequency Q-switched Tm: YAG laser by using injection seeding technique[J]. Applied Optics, 2011, 50(21): 4232-4236.

[12] SI-2000 seeder system operation and service manual[Z], 2008.

[13] Operation and maintenance manual for SureliteTM lasers[Z], 2002.

[14] Richard T White, He Yabai, Brian J Orr, et al. Control of frequency chirp in nanosecond-pulsed laser spectroscopy. 3. Spectrotemporal dynamics of an injection-seeded optical parametric oscillator[J]. J Opt Soc Am B, 2007, 24(10): 2601-2609.

[15] Ge Ye. Research on 935 nm differential absorption lidar for atmospheric water vapor measurement[D]. Shanghai: Institute of Technical Physics, Chinese Academy of Sciences, 2016. (in Chinese)

洪光烈, 梁新栋, 肖春雷, 孔伟, 舒嵘. 水汽差分吸收激光雷达发射机935 nm高功率光参量振荡器[J]. 红外与激光工程, 2018, 47(12): 1230007. Hong Guanglie, Liang Xindong, Xiao Chunlei, Kong Wei, Shu Rong. High-power optical parametric oscillator at 935 nm for water-vapor differential absorption lidar transmitter[J]. Infrared and Laser Engineering, 2018, 47(12): 1230007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!