激光与光电子学进展, 2013, 50 (7): 071401, 网络出版: 2013-07-01   

激光冲击强化在线检测系统设计及应用

Design and Implementation of Online Laser Peening Detection System
作者单位
中国科学院沈阳自动化研究所, 辽宁 沈阳 110016
摘要
为了克服现有激光冲击强化离线检测方法的缺点,对基于激光等离子体冲击波效应的在线检测系统进行了研究。激光被工件表面的吸收层吸收,在约束层的约束下形成高温高压的等离子体,并以冲击波的形式向外传播。该系统对空气中传播的冲击波进行采样、存储、数字滤波和波形数据分析,提取声压水平因子,来判断激光冲击强化的效果。提出了具体的实施方案,设计出了结构简单、实现方便的激光冲击强化在线检测系统,并通过测量工件表面的残余应力验证测量数据的可靠性。实验表明设计开发的激光冲击强化在线检测系统反应灵敏,检测结果可靠。
Abstract
In order to overcome the existing disadvantages of offline laser peening detection methods, the online detection system based on laser plasma shock wave effects is developed. Laser is absorbed by the ablative layer on the surface of the work piece, and plasma of high temperature and pressure is formed under the tamping layer and propagated outward in the form of shock wave. The shock wave in the air is sampled, stored, digitally filtered and analyzed by the system. The system gets the sound pressure level factor to determine the effect of laser peening. The online laser peening detection system is designed and the implementation is performed. The system is very simple and convenient. By comparing the surface residual stress of work piece, the results show that the laser peening online detection system is sensitive and reliable.
参考文献

[1] 陶春虎, 刘庆瑔, 曹春晓, 等. 航空用钛合金的失效及其预防[M]. 北京: 国防工业出版社, 2002. 5-10.

    Tao Chunhu, Liu Qingquan, Cao Chunxiao, et al.. Aerospace Titanium Alloys Failure and Its Prevention[M]. Beijing: National Defence Industry Press, 2002. 5-10.

[2] Y K Zhang, C L Hu, L Cai, et al.. Mechanism of improvement on fatigue life of metal by laser excited shock waves[J]. Appl Phys A, 2001, 72 (1): 113-116.

[3] Charles S Montross, Tao Wei, Lin Ye, et al.. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International J Fatigue, 2002, 24(10): 1021-1036.

[4] A T Dewald, J E Rankin, Michael R Hill, et al.. Assessment of tensile residual stress mitigation in alloy 22 welds due to laser peening[J]. J Engng Mater Technol, 2004, 126(3): 465-473.

[5] K K Liu, M R Hill. The effects of laser peening and shot peening on fretting fatigue in Ti-6Al-4V coupons[J]. Tropology International, 2009, 42(9): 1250-1262.

[6] P Peyre, R Fabbro. Laser shock processing of materials physical processes involved and examples of applications[J]. J Laser Applications, 1996, 8(3): 135-141.

[7] 任旭东, 阮亮, 皇甫喁卓, 等. 中高温条件下6061-T651铝合金激光冲击强化研究[J]. 中国激光, 2012, 39(3): 0303010.

    Ren Xudong, Ruan Liang, Huangfu Yongzhuo, et al.. Experimental research of laser shock processing 6061-T651 aluminum alloy during elevated temperature[J]. Chinese J Laser, 2012, 39(3): 0303010.

[8] B P Fairand, B A Wilcox, W J Gallaghtr, et al.. Laser shock induced microstructural and mechanical property changes in 7075 aluminum[J]. J Appl Phys, 1972, 43(9): 3393-3395.

[9] P J Golden, A Hutson, V Sundaram, et al.. Effect of surface treatments on fretting fatigue of Ti-6Al-4V[J]. International J Fatigue, 2007, 29(7): 1302-1310.

[10] Y K Zhang, J Z Lu, X D Ren, et al.. Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy[J]. Materials and Design, 2009, 30(5): 1697-1703.

[11] K Ding, L Ye. Laser Shock Peening Performance and Process Simulation[M]. Boca Raton: Woodhead Publishing, 2006. 17-18.

[12] 聂贵锋, 冯爱新, 任旭东, 等. 激光冲击参数对2024铝合金冲击区域的主应力及其方向的影响[J]. 中国激光, 2012, 39(1): 0103006.

    Nie Guifeng, Feng Aixin, Ren Xudong, et al.. Effect of laser shock processing parameters on residual principal stresses and its directions of 2024 aluminum alloy[J]. Chinese J Lasers, 2012, 39(1): 0103006.

乔红超, 赵吉宾. 激光冲击强化在线检测系统设计及应用[J]. 激光与光电子学进展, 2013, 50(7): 071401. Qiao Hongchao, Zhao Jibin. Design and Implementation of Online Laser Peening Detection System[J]. Laser & Optoelectronics Progress, 2013, 50(7): 071401.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!