激光与光电子学进展, 2013, 50 (12): 121102, 网络出版: 2013-11-19   

星载线阵电荷耦合器件错位成像的调制传递函数评估

Modulation Transfer Function Assessment of Spaceborne Linear Charge-Coupled Device Subpixel Imaging
李亚鹏 1,2,*何斌 1
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了定量研究线阵电荷耦合器件(CCD)错位成像技术的不同错位模式的调制传递函数(MTF),提出了基于MTF的评估方法,避免了以往方法表征图像质量不全面等缺点。推导了线阵CCD错位成像模式的MTF。分析表明,相比于线阵CCD的传统成像模式,利用多个线阵CCD实现错位1/2、1/3、1/4个CCD像元的错位成像模式的极限分辨率分别提高了86.2%、88.78%、89.54%,归一化空间频率0.5处MTF值分别提高了0.1679(41.43%)、0.2026(49.99%)、0.2151(53.07%),空间频率范围(0,0.5)内调制传递函数面积(MTFA)分别提高了10.09%、12.08%、12.77%。在Matlab平台上进行了仿真实验,并用灰度平均梯度和拉普拉斯能量从客观上评估了几种错位成像模式的图像质量,实验结果验证了MTF定量分析的有效性。提出的方法为后期星载遥感相机错位成像系统的设计提供了参考。
Abstract
In order to evaluate the modulation transfer function (MTF) of different subpixel imaging modes of spaceborne linear charge-coupled device (CCD), a quantitative assessment method based on MTF which can better characterize image quality is proposed. The MTF of subpixel imaging modes of linear CCD is derived. Compared with conventional imaging mode by a single linear CCD, analysis shows that, theoretical limiting resolution values of 1/2, 1/3, 1/4 CCD-pixels staggered subpixel imaging modes by simultaneously using multiple uniform linear CCDs are improved by 86.2%, 88.78%, 89.54%, respectively, MTF values at normalized spatial frequency of 0.5 are increased by 0.1679 (41.43%), 0.2026 (49.99%), 0.2151 (53.07%) respectively, and modulation transfer function areas (MTFAs) in the normalized spatial frequency range of (0, 0.5) are enhanced by 10.09%, 12.08%, 12.77%, respectively. Simulation experiment on Matlab platform is performed. Gray mean gradient (GMG) and energy of Laplacian (EOL) are utilized to evaluate the image quality performance of three subpixel imaging modes objectively and the results demonstrate the validity of this method. The proposed method has some reference value to the design of linear CCD subpixel imaging system in remote sensing.
参考文献

[1] 王胜春, 黄雅平, 罗四维, 等. 基于折线采样的高分辨率成像系统设计[J]. 光学学报, 2012, 32(9): 0911003.

    Wang Shengchun, Huang Yaping, Luo Siwei, et al.. Design of high-resolution imaging system based on doglegged sampling[J]. Acta Optica Sinica, 2012, 32(9): 0911003.

[2] 许文海, 吴厚德. 超高分辨率CCD成像系统的设计[J]. 光学 精密工程, 2012, 20(7): 1603-1610.

    Xu Wenhai, Wu Houde. Design of ultra-high resolution CCD imaging systems[J]. Optics and Precision Engineering, 2012, 20(7): 1603-1610.

[3] 吕恒毅, 刘杨, 郭永飞. 遥感相机焦面CCD机械拼接中重叠像元数的确定[J]. 光学 精密工程, 2012, 20(5): 1041-1047.

    Lü Hengyi, Liu Yang, Guo Yongfei. Computation of overlapping pixels of mechanical assembly CCD focal planes in remote sensing cameras[J]. Optics and Precision Engineering, 2012, 20(5): 1041-1047.

[4] 卢振华, 郭永飞, 李云飞, 等. 利用CCD拼接实现推扫式遥感相机的自动调焦[J]. 光学 精密工程, 2012, 20(7): 1559-1565.

    Lu Zhenhua, Guo Yongfei, Li Yunfei, et al.. Realization of auto-focus on APRC using CCD stitching[J]. Optics and Precision Engineering, 2012, 20(7): 1559-1565.

[5] S C Park, M K Park, M G Kang, et al.. Super-resolution image reconstruction: a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(30): 21-36.

[6] G C Holst, T S Lomheim. CMOS/CCD Sensors and Camera Systems[M]. Bellingham: SPIE Press, 2007. 305-337.

[7] C Latry, B Rouge. In flight commissioning of SPOT5 THR quincunx sampling mode[C]. SPIE, 2003, 4881: 189-199.

[8] W Skrbek, E Lorenz. HSRS: an infrared sensor for hot-spot-detection[C]. SPIE, 1998, 3437: 167-199.

[9] 周峰, 王世涛, 王怀义. 关于亚像元成像技术几个问题的探讨[J]. 航天返回与遥感, 2002, 23(4): 26-33.

    Zhou Feng, Wang Shitao, Wang Huaiyi. Study of several points about subpixel imaging technology[J]. SpacecraftRecovery & Remote Sensing, 2002, 23(4): 26-33.

[10] 王凌, 张平, 冯华君, 等. 用多次移位成像提高CCD成像分辨力的反演解析法[J]. 光电工程, 2003, 30(3): 62-65.

    Wang Ling, Zhang Ping, Feng Huajun, et al.. An inversion analysis method based on multi-shift imaging for improvement of CCD imaging resolution[J]. Opto-Electronic Engineering, 2003, 30(3): 62-65.

[11] 卓宁, 孙华燕, 张海江. 一种新的提高CCD 成像分辨率的方法[J]. 光学学报, 2005, 25(6): 777-780.

    Zhuo Ning, Sun Huayan, Zhang Haijiang. A new approach for improvement of CCD imaging resolution[J]. Acta Optica Sinica, 2005, 25(6): 777-780.

[12] 赵秀影, 王洪玉, 从福仲. 亚像元几何图像成像与超分辨恢复算法[J]. 光学技术, 2010, 36(5): 795-798.

    Zhao Xiuying, Wang Hongyu, Cong Fuzhong. Sub-pixel geometry image super-resolution algorithm[J]. Optical Technique, 2010, 36(5): 795-798.

[13] 徐伟伟, 张黎明, 杨本永, 等. 基于周期靶标的高分辨率光学卫星相机在轨MTF检测方法[J]. 光学学报, 2011, 31(7): 0711001.

    Xu Weiwei, Zhang Liming, Yang Benyong, et al.. On-orbit MTF measurement of high resolution satellite optical camera using periodic targets[J]. Acta Optica Sinica, 2011, 31(7): 0711001.

[14] 杨永明, 李清军, 李文明, 等. 基于Bayer滤波的彩色面阵CCD调制传递函数[J]. 光学 精密工程, 2012, 20(7): 1611-1618.

    Yang Yongming, Li Qingjun, Li Wenming, et al.. Modulation transfer function for color area CCD based on Bayer filtering[J]. Optics and Precision Engineering, 2012, 20(7): 1611-1618.

[15] O Hadar, A Dogariu, G D Boreman. Angular dependence of sampling modulation transfer function[J]. Appl Opt, 1997, 36(28): 7210-7216.

[16] Robert D Fiete. Modeling the Imaging Chain of Digital Cameras[M]. Bellingham: SPIE Press, 2010. 189-203.

[17] 李永乐, 王炜, 娄静涛, 等. 基于编码孔径的折反射全向成像去散焦模糊技术[J]. 光学学报, 2013, 33(5): 0511004.

    Li Yongle, Wang Wei, Lou Jingtao, et al.. Defocus deblurring for catadioptric omnidirectional imaging based on coded aperture[J]. Acta Optica Sinica, 2013, 33(5): 0511004.

[18] W Huang, Z Jing. Evaluation of focus measures in multi-focus image fusion[J]. Pattern Recognition Lett, 2007, 28(4): 493-500.

李亚鹏, 何斌. 星载线阵电荷耦合器件错位成像的调制传递函数评估[J]. 激光与光电子学进展, 2013, 50(12): 121102. Li Yapeng, He Bin. Modulation Transfer Function Assessment of Spaceborne Linear Charge-Coupled Device Subpixel Imaging[J]. Laser & Optoelectronics Progress, 2013, 50(12): 121102.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!