光学学报, 2018, 38 (3): 0328008, 网络出版: 2018-03-20  

布洛赫表面波效应及其传感应用 下载: 2228次特邀综述

Bloch Surface Wave Effect and Its Sensing Applications
万育航 1郑铮 1,2,*
作者单位
1 北京航空航天大学电子信息工程学院, 北京 100083
2 地球空间信息技术协同创新中心, 湖北 武汉 430079
引用该论文

万育航, 郑铮. 布洛赫表面波效应及其传感应用[J]. 光学学报, 2018, 38(3): 0328008.

Wan Yuhang, Zheng Zheng. Bloch Surface Wave Effect and Its Sensing Applications[J]. Acta Optica Sinica, 2018, 38(3): 0328008.

参考文献

[1] Yeh P, Yariv A, Hong C-S. Electromagnetic propagation in periodic stratified media. I. General theory[J]. Journal of Optical Society of America, 1977, 67(4): 423-438.

    Yeh P, Yariv A, Hong C-S. Electromagnetic propagation in periodic stratified media. I. General theory[J]. Journal of Optical Society of America, 1977, 67(4): 423-438.

[2] Meade R D, Brommer K D, Rappe A M, et al. Electromagnetic Bloch waves at the surface of a photonic crystal[J]. Physical Review B, 1991, 44(19): 10961.

    Meade R D, Brommer K D, Rappe A M, et al. Electromagnetic Bloch waves at the surface of a photonic crystal[J]. Physical Review B, 1991, 44(19): 10961.

[3] Robertson W M. Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays[J]. Journal of Lightwave Technology, 1999, 17(11): 2013-2017.

    Robertson W M. Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays[J]. Journal of Lightwave Technology, 1999, 17(11): 2013-2017.

[4] Robertson W M, May M S. Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays[J]. Applied Physics Letters, 1999, 74(13): 1800-1802.

    Robertson W M, May M S. Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays[J]. Applied Physics Letters, 1999, 74(13): 1800-1802.

[5] Wan Y H, Zheng Z, Kong W J, et al. Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave[J]. Optics Express, 2012, 20(8): 8998-9003.

    Wan Y H, Zheng Z, Kong W J, et al. Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave[J]. Optics Express, 2012, 20(8): 8998-9003.

[6] Wan Y H, Zheng Z, Kong W J, et al. Direct experimental observation of giant Goos-Hanchen shifts from bandgap-enhanced total internal reflection[J]. Optics Letters, 2011, 36(18): 3539-3541.

    Wan Y H, Zheng Z, Kong W J, et al. Direct experimental observation of giant Goos-Hanchen shifts from bandgap-enhanced total internal reflection[J]. Optics Letters, 2011, 36(18): 3539-3541.

[7] Descrovi E, Sfez T, Quaglio M, et al. Guided Bloch surface waves on ultrathin polymeric ridges[J]. Nano Letters, 2010, 10(6): 2087-2091.

    Descrovi E, Sfez T, Quaglio M, et al. Guided Bloch surface waves on ultrathin polymeric ridges[J]. Nano Letters, 2010, 10(6): 2087-2091.

[8] Wan Y H, Zheng Z, Shi X G, et al. Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement[J]. Science China Technological Sciences, 2013, 56(3): 567-572.

    Wan Y H, Zheng Z, Shi X G, et al. Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement[J]. Science China Technological Sciences, 2013, 56(3): 567-572.

[9] Yu L, Barakat E, Sfez T, et al. Manipulating Bloch surface waves in 2D: a platform concept-based flat lens[J]. Light: Science and Applications, 2014, 3(1): 110-118.

    Yu L, Barakat E, Sfez T, et al. Manipulating Bloch surface waves in 2D: a platform concept-based flat lens[J]. Light: Science and Applications, 2014, 3(1): 110-118.

[10] Wang R X, Xia H Y, Zhang D G, et al. Bloch surface waves confined in one dimension with a single polymeric nanofibre[J]. Nature Communications, 2017, 8: 14330.

    Wang R X, Xia H Y, Zhang D G, et al. Bloch surface waves confined in one dimension with a single polymeric nanofibre[J]. Nature Communications, 2017, 8: 14330.

[11] Robertson W M, May M S. Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays[J]. Applied Physics Letters, 1999, 74(13): 1800-1802.

    Robertson W M, May M S. Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays[J]. Applied Physics Letters, 1999, 74(13): 1800-1802.

[12] Kong W J, Zheng Z, Wan Y H, et al. High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors[J]. Sensors and Actuators B: Chemical, 2014, 193(3): 467-471.

    Kong W J, Zheng Z, Wan Y H, et al. High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors[J]. Sensors and Actuators B: Chemical, 2014, 193(3): 467-471.

[13] Paeder V, Musi V, Hvozdara L, et al. Detection of protein aggregation with a Bloch surface wave based sensor[J]. Sensors and Actuators B: Chemical, 2011, 157(1): 260-264.

    Paeder V, Musi V, Hvozdara L, et al. Detection of protein aggregation with a Bloch surface wave based sensor[J]. Sensors and Actuators B: Chemical, 2011, 157(1): 260-264.

[14] Konopsky V N, Alieva E V. Long-range plasmons in lossy metal films on photonic crystal surfaces[J]. Optics Letters, 2009, 34(4): 479-481.

    Konopsky V N, Alieva E V. Long-range plasmons in lossy metal films on photonic crystal surfaces[J]. Optics Letters, 2009, 34(4): 479-481.

[15] Konopsky V N, Alieva E V. A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index[J]. Biosensors and Bioelectronics, 2010, 25(5): 1212-1216.

    Konopsky V N, Alieva E V. A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index[J]. Biosensors and Bioelectronics, 2010, 25(5): 1212-1216.

[16] Konopsky V N, Alieva E V. Critical-angle refractometer enhanced by periodic multilayer coating[J]. Sensors and Actuators B: Chemical, 2010, 150(2): 794-797.

    Konopsky V N, Alieva E V. Critical-angle refractometer enhanced by periodic multilayer coating[J]. Sensors and Actuators B: Chemical, 2010, 150(2): 794-797.

[17] Konopsky V, Karakouz T, Alieva E, et al. Photonic crystal biosensor based on optical surface waves[J]. Sensors, 2013, 13(2): 2566-2578.

    Konopsky V, Karakouz T, Alieva E, et al. Photonic crystal biosensor based on optical surface waves[J]. Sensors, 2013, 13(2): 2566-2578.

[18] Giorgis F, Descrovi E, Summonte C. Experimental determination of the sensitivity of Bloch surface waves based sensors[J]. Optics Express, 2010, 18(8): 8087-8093.

    Giorgis F, Descrovi E, Summonte C. Experimental determination of the sensitivity of Bloch surface waves based sensors[J]. Optics Express, 2010, 18(8): 8087-8093.

[19] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B: Chemical, 1999, 54(1): 3-15.

    Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B: Chemical, 1999, 54(1): 3-15.

[20] Piliarik M, Homola J. Surface plasmon resonance (SPR) sensors: approaching their limits?[J]. Optics Express, 2009, 17(19): 16505-16517.

    Piliarik M, Homola J. Surface plasmon resonance (SPR) sensors: approaching their limits?[J]. Optics Express, 2009, 17(19): 16505-16517.

[21] Farmer A, Friedli A C, Wright S M, et al. Biosensing using surface electromagnetic waves in photonic band gap multilayers[J]. Sensors and Actuators B: Chemical, 2012, 173(10): 79-84.

    Farmer A, Friedli A C, Wright S M, et al. Biosensing using surface electromagnetic waves in photonic band gap multilayers[J]. Sensors and Actuators B: Chemical, 2012, 173(10): 79-84.

[22] Sinibaldi A, Danz N, Descrovi E, et al. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors[J]. Sensors and Actuators B: Chemical, 2012, 174(11): 292-298.

    Sinibaldi A, Danz N, Descrovi E, et al. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors[J]. Sensors and Actuators B: Chemical, 2012, 174(11): 292-298.

[23] Zheng Z, Wan Y H, Zhao X, et al. Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors[J]. Applied Optics, 2009, 48(13): 2491-2495.

    Zheng Z, Wan Y H, Zhao X, et al. Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors[J]. Applied Optics, 2009, 48(13): 2491-2495.

[24] Li Y H, Yang T L, Song S M, et al. Phase properties of Bloch surface waves and their sensing applications[J]. Applied Physics Letters, 2013, 103(4): 041116.

    Li Y H, Yang T L, Song S M, et al. Phase properties of Bloch surface waves and their sensing applications[J]. Applied Physics Letters, 2013, 103(4): 041116.

[25] Li Y H, Yang T L, Pang Z Y, et al. Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry[J]. Optics Express, 2014, 22(18): 21403-21410.

    Li Y H, Yang T L, Pang Z Y, et al. Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry[J]. Optics Express, 2014, 22(18): 21403-21410.

[26] Sinibaldi A, Rizzo R, Figliozzi G, et al. A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals[J]. Optics Express, 2013, 21(20): 23331-23344.

    Sinibaldi A, Rizzo R, Figliozzi G, et al. A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals[J]. Optics Express, 2013, 21(20): 23331-23344.

[27] Goos F, Hanchen H. Ein neuer und fundamentaler Versuch zur Totalreflexion (in German)[J]. Annalen Der Physik, 1947, 436(7/8): 333-346.

    Goos F, Hanchen H. Ein neuer und fundamentaler Versuch zur Totalreflexion (in German)[J]. Annalen Der Physik, 1947, 436(7/8): 333-346.

[28] Lotsch H K V. Beam displacement at total reflection: the Goos-Hanchen effect[J]. Optik, 1970, 32(2): 116-137.

    Lotsch H K V. Beam displacement at total reflection: the Goos-Hanchen effect[J]. Optik, 1970, 32(2): 116-137.

[29] de Beauregard O C, Imbert C. Quantized longitudinal and transverse shifts associated with total internal reflection[J]. Physical Review Letters, 1972, 28(18): 1211-1213.

    de Beauregard O C, Imbert C. Quantized longitudinal and transverse shifts associated with total internal reflection[J]. Physical Review Letters, 1972, 28(18): 1211-1213.

[30] Carniglia C K, Brownstein K R. Focal shift and ray model for total internal reflection[J]. Journal of the Optical Society of America, 1977, 67(1): 121-122.

    Carniglia C K, Brownstein K R. Focal shift and ray model for total internal reflection[J]. Journal of the Optical Society of America, 1977, 67(1): 121-122.

[31] Tamir T. Nonspecular phenomena in beam fields reflected by multilayered media[J]. Journal of the Optical Society of America A, 1986, 3(4): 558-565.

    Tamir T. Nonspecular phenomena in beam fields reflected by multilayered media[J]. Journal of the Optical Society of America A, 1986, 3(4): 558-565.

[32] Yin X, Hesselink L, Liu Z, et al. Large positive and negative lateral optical beam displacements due to surface plasmon resonance[J]. Applied Physics Letters, 2004, 85(3): 372-374.

    Yin X, Hesselink L, Liu Z, et al. Large positive and negative lateral optical beam displacements due to surface plasmon resonance[J]. Applied Physics Letters, 2004, 85(3): 372-374.

[33] Moskalenko V V, Soboleva I V, Fedyanin A A. Surface wave-induced enhancement of the Goos-Hanchen effect in one-dimensional photonic crystals[J]. Jetp Letters, 2010, 91(8): 382-386.

    Moskalenko V V, Soboleva I V, Fedyanin A A. Surface wave-induced enhancement of the Goos-Hanchen effect in one-dimensional photonic crystals[J]. Jetp Letters, 2010, 91(8): 382-386.

[34] Kong WJ, Wan YH, ZhengZ. Highly-sensitive, Bloch-surface-wave induced giant Goos-Hanchen shift sensing[C]∥Proceedings of the Conference on Lasers and Electro-Optics, 2012: CTh4L. 6.

    Kong WJ, Wan YH, ZhengZ. Highly-sensitive, Bloch-surface-wave induced giant Goos-Hanchen shift sensing[C]∥Proceedings of the Conference on Lasers and Electro-Optics, 2012: CTh4L. 6.

[35] Wan YH, Kong WJ, ZhengZ, et al. Giant spatial phase distortion in nonspecularly reflected beams[C]. Conference on Lasers And Electro-Optics, 2014: JTu4A. 78.

    Wan YH, Kong WJ, ZhengZ, et al. Giant spatial phase distortion in nonspecularly reflected beams[C]. Conference on Lasers And Electro-Optics, 2014: JTu4A. 78.

[36] Wan YH, Shi XG, ZhaoX, et al. Spatial-interferometry-enhanced giant Goos-Hanchen sensing based on Bloch surface wave sensors[C]∥Proceedings of the Frontiers in Optics, 2013: FTu1D. 6.

    Wan YH, Shi XG, ZhaoX, et al. Spatial-interferometry-enhanced giant Goos-Hanchen sensing based on Bloch surface wave sensors[C]∥Proceedings of the Frontiers in Optics, 2013: FTu1D. 6.

[37] WanY, ShuL, ZhuX, et al. Phase-sensitive Bloch surface wave sensing[C]∥Proceedings of the Frontiers in Optics, 2014: FW2G. 5.

    WanY, ShuL, ZhuX, et al. Phase-sensitive Bloch surface wave sensing[C]∥Proceedings of the Frontiers in Optics, 2014: FW2G. 5.

[38] Rizzo R, Danz N, Michelotti F, et al. Optimization of angularly resolved Bloch surface wave biosensors[J]. Optics Express, 2014, 22(19): 23202-23214.

    Rizzo R, Danz N, Michelotti F, et al. Optimization of angularly resolved Bloch surface wave biosensors[J]. Optics Express, 2014, 22(19): 23202-23214.

[39] Kong W J, Wan Y H, Ni X C, et al. Optimizing loss of the dielectric stack for Bloch-surface-wave sensors under different interrogation schemes[J]. Journal of Modern Optics, 2016, 64(4): 407-412.

    Kong W J, Wan Y H, Ni X C, et al. Optimizing loss of the dielectric stack for Bloch-surface-wave sensors under different interrogation schemes[J]. Journal of Modern Optics, 2016, 64(4): 407-412.

[40] Ramirez-Duverger A S, Gaspar-Armenta J, Garcia-Llamas R. Surface wave effect on light scattering from one-dimensional photonic crystals[J]. Optics Communications, 2007, 277(2): 302-309.

    Ramirez-Duverger A S, Gaspar-Armenta J, Garcia-Llamas R. Surface wave effect on light scattering from one-dimensional photonic crystals[J]. Optics Communications, 2007, 277(2): 302-309.

[41] Soboleva I V, Descrovi E, Summonte C, et al. Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals[J]. Applied Physics Letters, 2009, 94(23): 231122.

    Soboleva I V, Descrovi E, Summonte C, et al. Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals[J]. Applied Physics Letters, 2009, 94(23): 231122.

[42] Ballarini M, Frascella F, Michelotti F, et al. Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal[J]. Applied Physics Letters, 2011, 99(4): 043302.

    Ballarini M, Frascella F, Michelotti F, et al. Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal[J]. Applied Physics Letters, 2011, 99(4): 043302.

[43] Delfan A, Liscidini M, Sipe J E. Surface enhanced Raman scattering in the presence of multilayer dielectric structures[J]. Journal of the Optical Society of America B, 2012, 29(8): 1863-1874.

    Delfan A, Liscidini M, Sipe J E. Surface enhanced Raman scattering in the presence of multilayer dielectric structures[J]. Journal of the Optical Society of America B, 2012, 29(8): 1863-1874.

[44] Pirotta S, Xu X G, Delfan A, et al. Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves[J]. The Journal of Physical Chemistry C, 2013, 117(13): 6821-6825.

    Pirotta S, Xu X G, Delfan A, et al. Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves[J]. The Journal of Physical Chemistry C, 2013, 117(13): 6821-6825.

[45] Wan Y H, Zheng Z, Kong W J, et al. Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave- induced goos-hanchen shifts[J]. IEEE Photonics Journal, 2013, 5(1): 7200107.

    Wan Y H, Zheng Z, Kong W J, et al. Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave- induced goos-hanchen shifts[J]. IEEE Photonics Journal, 2013, 5(1): 7200107.

[46] Fornasari L, Floris F, Patrini M, et al. Demonstration of fluorescence enhancement via Bloch surface waves in all-polymer multilayer structures[J]. Physical Chemistry Chemical Physics, 2016, 18(20): 14086-14093.

    Fornasari L, Floris F, Patrini M, et al. Demonstration of fluorescence enhancement via Bloch surface waves in all-polymer multilayer structures[J]. Physical Chemistry Chemical Physics, 2016, 18(20): 14086-14093.

[47] Descrovi E, Frascella F, Sciacca B, et al. Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications[J]. Applied Physics Letters, 2007, 91(24): 241109-241103.

    Descrovi E, Frascella F, Sciacca B, et al. Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications[J]. Applied Physics Letters, 2007, 91(24): 241109-241103.

[48] Wei X, Kang C, Liscidini M, et al. Grating couplers on porous silicon planar waveguides for sensing applications[J]. Journal of Applied Physics, 2008, 104(12): 113-123.

    Wei X, Kang C, Liscidini M, et al. Grating couplers on porous silicon planar waveguides for sensing applications[J]. Journal of Applied Physics, 2008, 104(12): 113-123.

[49] Rodriguez G A, Ryckman J D, Jiao Y, et al. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor[J]. Biosensors and Bioelectronics, 2014, 53(1): 486-493.

    Rodriguez G A, Ryckman J D, Jiao Y, et al. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor[J]. Biosensors and Bioelectronics, 2014, 53(1): 486-493.

[50] Descrovi E, Giorgis F, Dominici L, et al. Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal[J]. Optics Letters, 2008, 33(3): 243-245.

    Descrovi E, Giorgis F, Dominici L, et al. Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal[J]. Optics Letters, 2008, 33(3): 243-245.

[51] Sreekanth K V, Zeng S, Shang J, et al. Excitation of surface electromagnetic waves in a graphene-based Bragg grating[J], 2012, 2(10): 737.

    Sreekanth K V, Zeng S, Shang J, et al. Excitation of surface electromagnetic waves in a graphene-based Bragg grating[J], 2012, 2(10): 737.

[52] Li S N, Liu J S, Zheng Z, et al. Highly sensitive, Bloch surface wave D-Type fiber sensor[J]. IEEE Sensors Journal, 2016, 16(5): 1200-1204.

    Li S N, Liu J S, Zheng Z, et al. Highly sensitive, Bloch surface wave D-Type fiber sensor[J]. IEEE Sensors Journal, 2016, 16(5): 1200-1204.

[53] Tan X J, Zhu X S. Optical fiber sensor based on Bloch surface wave in photonic crystals[J]. Optics Express, 2016, 24(14): 16016-16026.

    Tan X J, Zhu X S. Optical fiber sensor based on Bloch surface wave in photonic crystals[J]. Optics Express, 2016, 24(14): 16016-16026.

[54] Tu T Y, Pang F F, Zhu S, et al. Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing[J]. Optics Express, 2017, 25(8): 9019-9027.

    Tu T Y, Pang F F, Zhu S, et al. Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing[J]. Optics Express, 2017, 25(8): 9019-9027.

[55] Robertson WM, Wright SM, Friedli AC, et al. Protein microarray analysis using surface optical wave resonance in photonic band gap multilayers[C]. Conference on Lasers & Electro-Optics/Quantum Electronics and Laser Science Conference, 2007: CWK4.

    Robertson WM, Wright SM, Friedli AC, et al. Protein microarray analysis using surface optical wave resonance in photonic band gap multilayers[C]. Conference on Lasers & Electro-Optics/Quantum Electronics and Laser Science Conference, 2007: CWK4.

[56] Rivolo P, Michelotti F, Frascella F, et al. Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves[J]. Sensors and Actuators B: Chemical, 2012, 161(1): 1046-1052.

    Rivolo P, Michelotti F, Frascella F, et al. Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves[J]. Sensors and Actuators B: Chemical, 2012, 161(1): 1046-1052.

[57] Ye J Y, Ishikawa M. Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration[J]. Optics Letters, 2008, 33(15): 1729-1731.

    Ye J Y, Ishikawa M. Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration[J]. Optics Letters, 2008, 33(15): 1729-1731.

[58] Guo Y, Ye J Y, Divin C, et al. Real-Time biomolecular binding detection using a sensitive photonic crystal biosensor[J]. Analytical Chemistry, 2010, 82(12): 5211-5218.

    Guo Y, Ye J Y, Divin C, et al. Real-Time biomolecular binding detection using a sensitive photonic crystal biosensor[J]. Analytical Chemistry, 2010, 82(12): 5211-5218.

[59] 陈颖, 范卉青, 卢波, 等. 基于布洛赫理论的光子晶体表面波形成及传感机理[J]. 中国激光, 2016, 43(1): 0116002.

    陈颖, 范卉青, 卢波, 等. 基于布洛赫理论的光子晶体表面波形成及传感机理[J]. 中国激光, 2016, 43(1): 0116002.

    Chen Y, Fan H Q, Lu B, et al. Formation and sensing mechanism of photonic crystal surface wave based on Bloch theory[J]. Chinese Journal of Lasers, 2016, 43(1): 0116002.

    Chen Y, Fan H Q, Lu B, et al. Formation and sensing mechanism of photonic crystal surface wave based on Bloch theory[J]. Chinese Journal of Lasers, 2016, 43(1): 0116002.

[60] 陈颖, 曹会莹, 韩帅涛, 等. 含吸收介质的光子晶体法布里-珀罗异质结构的传感特性研究[J]. 光学学报, 2017, 37(2): 0223003.

    陈颖, 曹会莹, 韩帅涛, 等. 含吸收介质的光子晶体法布里-珀罗异质结构的传感特性研究[J]. 光学学报, 2017, 37(2): 0223003.

    Chen Y, Cao H Y, Han S T, et al. Sensing property of photonic crystal fabry-perot heterogeneous structure with absorption medium[J]. Acta Optica Sinica, 2017, 37(2): 0223003.

    Chen Y, Cao H Y, Han S T, et al. Sensing property of photonic crystal fabry-perot heterogeneous structure with absorption medium[J]. Acta Optica Sinica, 2017, 37(2): 0223003.

[61] Konopsky V N, Alieva E V. Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface[J]. Physical Review Letters, 2006, 97(25): 253904.

    Konopsky V N, Alieva E V. Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface[J]. Physical Review Letters, 2006, 97(25): 253904.

[62] Valery N K, Dmitry V B, Elena V A, et al. Registration of long-range surface plasmon resonance by angle-scanning feedback and its implementation for optical hydrogen sensing[J]. New Journal of Physics, 2009, 11(6): 063049.

    Valery N K, Dmitry V B, Elena V A, et al. Registration of long-range surface plasmon resonance by angle-scanning feedback and its implementation for optical hydrogen sensing[J]. New Journal of Physics, 2009, 11(6): 063049.

[63] Konopsky V N, Basmanov D V, Alieva E V, et al. Size-dependent hydrogen uptake behavior of Pd nanoparticles revealed by photonic crystal surface waves[J]. Applied Physics Letters, 2012, 100(8): 083108.

    Konopsky V N, Basmanov D V, Alieva E V, et al. Size-dependent hydrogen uptake behavior of Pd nanoparticles revealed by photonic crystal surface waves[J]. Applied Physics Letters, 2012, 100(8): 083108.

[64] Michelotti F, Sciacca B, Dominici L, et al. Fast optical vapour sensing by Bloch surface waves on porous silicon membranes[J]. Physical Chemistry Chemical Physics, 2010, 12(2): 502-506.

    Michelotti F, Sciacca B, Dominici L, et al. Fast optical vapour sensing by Bloch surface waves on porous silicon membranes[J]. Physical Chemistry Chemical Physics, 2010, 12(2): 502-506.

万育航, 郑铮. 布洛赫表面波效应及其传感应用[J]. 光学学报, 2018, 38(3): 0328008. Wan Yuhang, Zheng Zheng. Bloch Surface Wave Effect and Its Sensing Applications[J]. Acta Optica Sinica, 2018, 38(3): 0328008.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!