中国激光, 2014, 41 (12): 1205005, 网络出版: 2014-10-30  

确定光子晶体光纤方位角的散射图案特征法

Characteristics Method of Forward Scattering Patterns for Determining Azimuth Angle of Photonic Crystal Fibers
作者单位
1 暨南大学光电信息与传感技术广东普通高校重点实验室, 广东 广州 510632
2 华中科技大学武汉国家光电实验室(筹), 湖北 武汉 430074
摘要
为了满足加工和制作光子晶体光纤器件时的方位角定位需求,提出基于激光前向散射图案的方位角确定方法。用波长为650nm的激光垂直照射在光子晶体光纤的侧面,拍摄前向散射图案同时实时记录光子晶体光纤端面的显微图像。选取前向散射图案的局部区域强度之和为特征值,通过比较分析得出当求取前向散射图案半幅散射条纹强度值总和时,其特征值变化规律与光子晶体光纤内部轴向结构相对应,可用于光子晶体光纤特殊方位角的确定。在三种不同结构的光子晶体光纤的特殊方位角定位中,该方法的定位精度均小于0.5°,充分证实了该方法的有效性和普适性。提出的光子晶体光纤轴向特殊方位角确定方法简单实用、定位精确,将在光子晶体光纤器件加工中发挥重要的作用。
Abstract
In order to meet the requirement of determining the azimuth angles in fabricating optical devices from photonic crystal fibers (PCFs), a method based on analyzing the forward scattering patterns is proposed. The PCF sample is illuminated transversely by a laser of 650 nm, and the forward scattering patterns and the tip microscopic images are simultaneously recorded. The summary of local intensities of the forward scattering patterns is chosen as the characteristic value. The characteristic value presents good correspondence to the azimuth angles of photonic crystal fiber by comparing the half-image summarized intensities of the forward scattering patterns. Based on this correspondence, the special azimuth angle can be determined. The accuracy within 0.5° obtained in the applications to three kinds of PCFs proves that the proposed method is effective and universal. This method is simple in operation, accurate in determination, and is expected to play an important role in the axial orientation in the fabrication of PCF based devices.
参考文献

[1] P Russell. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362.

[2] 张银, 陈明阳, 张永康. 新型大模场光子晶体光纤传输系统及其传输特性分析[J]. 中国激光, 2012, 39(12): 1205001.

    Zhang Yin, Chen Mingyang, Zhang Yongkang. Investigation of a novel large-mode-area photonic crystal fiber transmission system and its transmission characteristics[J]. Chinese J Lasers, 2012, 39(12): 1205001.

[3] 曹晔,王江昀, 童峥嵘. 基于微结构纤芯的超低损耗多零色散点的高双折射光子晶体光纤[J]. 中国激光, 2013, 40(9): 0905005.

    Cao Ye, Wang Jiangyun, Tong Zhengrong. High birefringence and low confinement loss photonic crystal fiber with multiple zero dispersion points based on micro-structured core[J]. Chinese J Lasers, 2013, 40(9): 0905005.

[4] M Baumgartl, F Jansen, F Stutzki, et al.. High average and peak power femtosecond large-pitch photonic-crystal-fiber laser[J]. Opt Lett, 2011, 36(2): 244-246.

[5] J Villatoro, V Finazzi, G Badenes, et al.. Highly sensitive sensors based on photonic crystal fiber modal interferometers[J]. Journal of Sensors, 2009.

[6] O Levi, M M Lee, J Zhang, et al.. Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing[C]. SPIE, 2007. 6447.

[7] O Frazo, J L Santos, F M Araújo, et al.. Optical sensing with photonic crystal fibers[J]. Laser and Photonics Reviews, 2008, 2(6): 449-459.

[8] D J J Hu, J L Lim, Y Cui, et al.. Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber[J]. IEEE Photonics Journal, 2012, 4(5): 1248-1255.

[9] Yinian Zhu, Ping Shum, Huiwen Bay, et al.. Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber[J]. Opt Lett, 2005, 30(4): 367-369.

[10] Tigran Baghdasaryan, Thomas Geernaert, Francis Berghmans, et al.. Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription[J]. Opt Express, 2011, 19(8): 7705-7716.

[11] NanKuang Chen, Sien Chi. Influence of a holey cladding structure on spectral characteristics of side-polished endlessly single-mode photonic crystal fibers[J]. Opt Lett, 2006, 31(15): 2251-2253.

[12] B H Lee, J B Eom, J Kim, et al.. Photonic crystal fiber coupler[J]. Opt Lett, 2002, 27(10): 812-814.

[13] 余金波, 陈哲, 罗云瀚, 等. 基于侧边抛磨光纤的侧面熔粘耦合的光纤耦合器[J]. 光电子·激光, 2013, 24(5): 897-902.

    Yu Jinbo, Chen Zhe, Luo Yunhan, et al.. A fused side-adhered optical fiber coupler based on side-polished fibers[J]. J Optoelectronics·Laser, 2013, 24(5): 897-902.

[14] 毕卫红, 许睿, 付广伟, 等. 40倍长工作距离PCF熔接系统显微物镜设计[J]. 光电工程, 2013, 40(1): 44-50.

    Bi Weihong, Xu Rui, Fu Guangwei, et al.. Design of 40× long working distance PCF splice system microscope objectives[J]. Opto-Electronic Engineering, 2013, 40(1): 44-50.

[15] J Holdsworth, K Cook, J Canning, et al.. Rotationally variant grating writing in photonic crystal fibres[J]. The Open Optics Journal, 2009, 3(1): 19-23.

[16] G D Marshall, D J Kan, A A Asatryan, et al.. Transverse coupling to the core of a photonic crystal fiber: The photo-inscription of gratings[J]. Opt Express, 2007, 15(12): 7876-7887.

[17] J Petrovic, T Allsop. Scattering of the laser writing beam in photonic crystal fibre[J]. Opt Laser Technol, 2010, 42(7): 1172-1175.

[18] Tigran Baghdasaryan, Thomas Geernaert, Martin Becker, et al.. Influence of fiber orientation on femtosecond Bragg grating inscription in pure silica microstructured optical fibers[J]. IEEE Photon Technol Lett, 2011, 23(23): 1832-1834.

[19] L Y Zang, T G Euser, M S Kang, et al.. Side-scattering analysis of structural rocking filters in photonic crystal fiber[C]. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, 2010: BThC5.

[20] L Y Zang, T G Euser, M S Kang, et al.. Structural analysis of photonic crystal fibers by side scattering of laser light[J]. Opt Lett, 2011, 36(9): 1668-1670.

[21] R D Meade, K D Brommer, A M Rappe, et al.. Existence of a photonic band gap in two dimensions[J]. Appl Phys Lett, 1992, 61(4): 495-497.

[22] R Hillebrand, W Hergert, W Harms. Theoretical band gap studies of two-dimensional photonic crystals with varying column roundness[J]. Physica Status Solidi B: Basic Research, 2000, 217(2): 981-989.

黄华才, 陈哲, 罗云瀚, 唐洁媛, 谢俊辛, 余新宇, 何小莉, 甘宏波, 马悦, 卫青松, 余健辉, 张军, 卢惠辉, 戴能利, 彭景刚. 确定光子晶体光纤方位角的散射图案特征法[J]. 中国激光, 2014, 41(12): 1205005. Huang Huacai, Chen Zhe, Luo Yunhan, Tang Jieyuan, Xie Junxin, Yu Xinyu, He Xiaoli, Gan Hongbo, Ma Yue, Wei Qingsong, Yu Jianhui, Zhang Jun, Lu Huihui, Dai Nengli, Peng Jinggang. Characteristics Method of Forward Scattering Patterns for Determining Azimuth Angle of Photonic Crystal Fibers[J]. Chinese Journal of Lasers, 2014, 41(12): 1205005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!