光学学报, 2006, 26 (10): 1569, 网络出版: 2006-10-31   

一种新型高非线性色散平坦光子晶体光纤结构

A Novel Photonic Crystal Fiber with High Nonlinearity and Flattened Dispersion
作者单位
1 清华大学精密测试技术及仪器国家重点实验室, 北京 100084
2 Department of Electrical Engineering, University of California, Santa Cruz, CA 95064, USA
摘要
提出了一种新的高非线性色散平坦光子晶体光纤结构,引入了一个衡量非线性和色散平坦的品质因子δ。采用平面波展开法,研究了气孔尺寸对光子晶体光纤色散特性和非线性的影响。新结构在第一圈空气孔的中间插入六个附加小孔,使得光子晶体光纤有更小的有效模场面积,提高了光纤的非线性。通过控制第一圈和第三圈空气孔以及附加小孔的直径,使得该光子晶体光纤在大约330 nm的波长范围内,光纤的色散系数介于±0.5 ps/(km·nm)之间,在大约230nm的波长范围内,光纤的色散系数介于±0.1 ps/(km·nm)之间,在大约200 nm的波长范围内,光纤的色散系数D的值介于±0.05 ps/(km·nm)之间。光纤的有效模场面积为2.26 μm2。衡量非线性和色散平坦的品质因子δ=11.8 ps·W/μm2。
Abstract
A novel photonic crystal fiber structure with high nonlinearity and flattened dispersion is proposed and analyzed. A parameter δ is introduced to measure the nonlinearity and dispersion flattening. The effect of hole size on nonlinearity and dispersion of the photonic crystal fiber (PCF) is analyzed by the plane wave expansion method. The new structure introduces six additional smaller holes between the holes of the first ring to reduce the effective area, and increase the nonlinearity of the fiber. By optimizing the diameters of the first, third, and the additional rings of holes, a PCF with high nonlinearity and flattened dispersion is achieved. The dispersion parameter is within ±0.5 ps/(km·nm) in a 330 nm wavelength range, within ±0.1 ps/(km·nm) in a 230 nm wavelength range, and within ±0.05 ps/(km·nm) in a 200 nm wavelength range. The effective area is 2.26 μm2. The nonlinearitydispersion flattening parameter δ=11.8 ps·W/μm2.
参考文献

[1] . Photonic crystal fibers[J]. Science, 2003, 299: 358-362.

[2] . Knight. Photonic crystal fibres[J]. Nature, 2003, 424: 847-851.

[3] . Highly nonlinear dispersionflattened photonic crystal fibers for supercontinuum generation in a telecommunication window[J]. Optics Express, 2004, 12(10): 2027-2032.

[4] . Photonic crystal fibers with squeezed hexagonal lattice[J]. Opt. Exp., 2004, 12(11): 2371-2376.

[5] . A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores[J]. IEEE Photon. Technol. Lett., 2004, 16(7): 1670-1672.

[6] . P. Hansen. Dispersion flattened hybridcore nonlinear photonic crystal fiber[J]. Opt. Exp., 2003, 11(13): 1503-1509.

[7] Y. L. Hoo, W. Jin, J. Ju et al.. Design of photonic crystal fibers with ultralow, ultraflattened chromatic dispersion[J]. Opt. Commun., 2004, 242(4~6): 327~332

[8] . Designing the properties of dispersionflattened photonic crystal fibers[J]. Opt. Exp., 2001, 9(13): 687-697.

[9] . H. Reeves, J. C. Knight, P. St. J. Russell. Demonstration of ultraflattened dispersion in photonic crystal fibers[J]. Opt. Exp., 2002, 10(14): 609-613.

[10] . Ferrando, E. Silvestre, J. J. Miret et al.. Nearly zero ultraflattened dispersion in photonic crystal fibers[J]. Opt. Lett., 2000, 25(11): 790-792.

[11] . Poli, A. Cucinotta, S. Selleri et al.. Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers[J]. IEEE Photon. Technol. Lett., 2004, 16(4): 1065-1067.

[12] . Saitoh, M. Koshiba, T. Hasegawa et al.. Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion[J]. Opt. Exp., 2003, 11(8): 843-852.

[13] . A novel ultraflattened dispersion photonic crystal fiber[J]. IEEE Photon. Technol. Lett., 2005, 17(1): 67-69.

[14] . Effective area of photonic crystal fibers[J]. Opt. Exp., 2002, 10(7): 341-348.

[15] . Petropoulos, H. EbendorffHeidepriem, V. Finazzi et al.. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers[J]. Opt. Exp., 2003, 11(26): 3568-3573.

[16] Ren Guobin, Wang Zhi, Lou Shuqin et al.. Localized orthogonal function model of photonic crystal fibers[J]. Acta Optica Sinica, 2004, 24(8): 1130~1136 (in Chinese)
任国斌,王智,娄淑琴 等. 光子晶体光纤的正交函数模型[J]. 光学学报, 2004, 24(8): 1130~1136

[17] Wang Zhi, Ren Guobin, Lou Shuqin et al.. A novel supercell lattice method for the photonic crystal fibers[J]. Chin. J. Lasers, 2005, 32(1): 59~63 (in Chinese)
王智,任国斌, 娄淑琴 等. 用于光子晶体光纤研究的超格子构造法[J]. 中国激光, 2005, 32(1): 59~63

[18] . Johnson, J. D. Joannopoulos. Blockiterative frequencydomain methods for Maxwell′s equations in a planewave basis[J]. Opt. Exp., 2001, 8(3): 173-190.

[19] Govind P. Agrawal. Nonlinear Fiber Optics[M]. San Diego, CA: Academic Press, 2001. 447~453

[20] Yanfeng Li, Bowen Liu, Zihan Wang et al.. Influence on photonic crystal fiber dispersion of the size of air holes in different rings within the cladding[J]. Chin. Opt. Lett., 2004, 2(2): 75~77

刘洁, 杨昌喜, Claire Gu, 金国藩. 一种新型高非线性色散平坦光子晶体光纤结构[J]. 光学学报, 2006, 26(10): 1569. 刘洁, 杨昌喜, Claire Gu, 金国藩. A Novel Photonic Crystal Fiber with High Nonlinearity and Flattened Dispersion[J]. Acta Optica Sinica, 2006, 26(10): 1569.

本文已被 17 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!