光子学报, 2018, 47 (9): 0916004, 网络出版: 2018-09-15  

大尺寸MAPbI3单晶的制备及光电性能研究

Preparation and Optoelectronic Properties of Large-scale MAPbI3 Single Crystals
作者单位
1 陕西科技大学 电气与信息学院 陕西省平板显示技术工程研究中心, 西安 710071
2 天津大学 理学院 天津市分子光电科学重点实验室, 天津 300072
摘要
采用两步气相沉积法制备了大尺寸(150 μm左右)高质量的MAPbI3单晶, 并通过对衬底表面修饰来调控晶体的成核位置. 从衬底温度、载气流速、时间效应等方面系统探究了影响PbI2晶体生长的因素.结果表明: 该晶体生长的最优条件分别对应为350 ℃、20 sccm、20 min. 将MAPbI3单晶放置在空气中50天后, 其X衍射特征峰没有明显变化. 最后分析该器件的光电特性, 发现其开关比高达104, 响应度为3.8×104 A/W, 且具有较快的响应速度(上升时间: 0.03 s; 下降时间: 0.15 s).该MAPbI3单晶光电探测器将在光电学领域有非常良好的应用.
Abstract
A large size (about 150 μm) high quality MAPbI3 single crystals have been grown by modifying the surface of the substrate to control the nucleation position. Furthermore, the growth factors of PbI2 crystals was studied systematically, mainly including substrate temperature, flow rate of carrier gas, time effect. The results showed that the best conditions for the crystal growth correspond to 350 ℃, 20 sccm and 20 min. In addition, the perovskite single crystalline was measured by XRD when exposed to air for 50 days or more. Although the characteristic peaks were different in size, the crystal did not change as a whole. By analyzing the optoelectronic properties of device, we found that the switch ratio of device is up to 104, and its responsivity is 3.8×104 A/W. In addition, the device shows a fast response (rise time: 0.03 s; fall time: 0.15 s). The above shows that our developed MAPbI3 single crystal photodetector will have a very good application in the field of optoelectronics.
参考文献

[1] CHENG Zi-yong, LIN Jun. Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering[J]. The Royal Society of Chemistry, 2010, 12(10): 2646-2663.

[2] ZHANG Qing, HA Son-tung, LIU Xin-feng, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 2014, 14(10): 5995-6001.

[3] SHI Dong, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-533.

[4] YANG Meng-jin, ZHANG Tai-yang, SCHULZ P, et al. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening[J]. Nature Communications, 2016, 7(12305): 1-9.

[5] XING Jun, LIU Xin-feng, ZHANG Qing, et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room temperature nanolasers[J]. Nano Letters, 2015, 15(7): 4571-4578.

[6] LIU Yu-cheng, YANG Zhou, CUI Dong, et al. Two-Inch-Sized perovskite CH3NH3PbX3 (X=Cl, Br, I) crystals: growth and characterization[J]. Advanced Materials, 2015, 27(35): 5176-83.

[7] WANG Yi-ping, SHI Yun-feng, XIN Guo-qing, et al. Two-dimensional van der waals epitaxy kinetics in a three-dimensional perovskite halide[J]. Crystal Growth & Design, 2015, 15(10): 4741-4749.

[8] LIU Xin-feng, NIU Lin, WU Chun-yang, et al. Periodic organic inorganic halide perovskite microplatelet arrays on silicon substrates for room temperature lasing[J]. Advanced Science, 2016, 3(11): 1600137-1600143.

[9] XIAO Man-da, HUANG Fu-zhi, HUANG Wen-chao, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells[J]. Angewandte Chemie, 2014, 53(37): 9898-9903.

[10] BUSH K A, PALMSTROM A F, YU Z J, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability[J]. Nature Energy, 2017, 2(4): 17009-17016.

[11] WANG Zhi-ping, LIN Qian-qian, CHMIEL F P, et al. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium caesium formamidinium lead halide perovskites[J]. Nature Energy, 2017, 2(9): 17135-17145.

[12] DENG Hui, DONG Dong-dong, QIAO Ke-ke, et al. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices[J]. Nanoscale, 2015, 7(9): 4163-4170.

[13] HORVATH E, SPINA M, SZEKRENYES Z, et al. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization[J]. Nano Letters, 2014, 14(12): 6761-6767.

[14] QIN Xiang, YAO Yi-fan, DONG Huan-li, et al. Perovskite photodetectors based on CH3NH3PbI3 single crystals[J]. Chemistry-An Asian Journal, 2016, 11(19): 2675-2679.

[15] ZENG E, YUN B, TOSADO G A, et al. Solution-processed visible-blind UV-A photodetectors based on CH3NH3PbCl3 perovskite thin films[J]. Journal of Materials Chemistry C, 2017, 5(15): 3796-3806.

[16] CHIN X Y, CORTECCHIA D, YIN Jun, et al. Lead iodide perovskite light-emitting field-effect transistor[J]. Nature Communications, 2015, 6(7383): 1-9.

[17] LYASHENKO D, PEREZ A, ZAKaHIDOV A. High-resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography[J]. Physica Status Solidi A, 2017, 1(214): 1600302-1600309.

[18] TYAGI P, ARVESON S M, TISDALE W A, et al. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement[J]. The Journal of Physical Chemistry Letters, 2015, 6(10): 1911-1917.

[19] SICHERT J A, TONG Y, MUTZ N, et al. Quantum size effect in organometal halide perovskite nanoplatelets[J]. Nano Letters, 2015, 15(10): 6521-6528.

[20] FU Yong-ping, MENG Fei,ROWLEY M B, et al. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications[J]. Journal of the American Chemical Society, 2015, 137(17): 5810-5818.

[21] SHAMSI J, DANG Z, BIANCHINI P, et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range[J]. Journal of the American Chemical Society, 2016, 138(23): 7240-7243.

[22] HA Tung-ha, LIU Xin-feng, ZHANG Qing, et al. Synthesis of organic inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices[J]. Advanced Optical Materials, 2014, 2(9): 838-844.

[23] NIU W, EIDEN A, PRAKASH G, et al. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors[J]. Applied Physics Letters, 2014, 104(17): 171111-171116.

[24] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 2014, 26(10): 1584-1589.

[25] ZHONG Mian-zeng, HUANG Le, DENG Hui-xiong, et al. Flexible photodetectors based on phase dependent PbI2 single crystals[J]. Journal of Materials Chemistry C, 2016, 4(27): 6492-6499.

[26] NAM C Y, THANM D. Effect of the polar surface on GaN nanostructure morphology and growth orientation[J]. Applied Physics Letters, 2004, 85(23): 5676-5678.

张婵婵, 张方辉, 丁利苹, 朱晓婷, 李荣金. 大尺寸MAPbI3单晶的制备及光电性能研究[J]. 光子学报, 2018, 47(9): 0916004. ZHANG Chan-chan, ZHANG Fang-hui, DING Li-ping, ZHU Xiao-ting, LI Rong-jin. Preparation and Optoelectronic Properties of Large-scale MAPbI3 Single Crystals[J]. ACTA PHOTONICA SINICA, 2018, 47(9): 0916004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!