激光与光电子学进展, 2017, 54 (7): 072401, 网络出版: 2017-07-05  

周期性孔阵列金属表面附近的局域态密度 下载: 746次

Local Density of States Near Surface of Metal with Periodic Hole Arrays
作者单位
1 南昌大学物理系, 江西 南昌 330031
2 南昌大学高等研究院, 江西 南昌 330031
引用该论文

周婷, 王同标, 廖清华, 刘江涛, 于天宝, 刘念华. 周期性孔阵列金属表面附近的局域态密度[J]. 激光与光电子学进展, 2017, 54(7): 072401.

Zhou Ting, Wang Tongbiao, Liao Qinghua, Liu Jiangtao, Yu Tianbao, Liu Nianhua. Local Density of States Near Surface of Metal with Periodic Hole Arrays[J]. Laser & Optoelectronics Progress, 2017, 54(7): 072401.

参考文献

[1] 周 军, 李 娟, 王庆丰, 等. 基于自发辐射抑制的红外光机系统优化设计[J]. 光学学报, 2015, 35(3): 0322003.

    Zhou Jun, Li Juan, Wang Qingfeng, et al. Optimized design of infrared opto-mechanical systems based on the spontaneous suppression[J]. Acta Optica Sinica, 2015, 35(3): 0322003.

[2] 曹兆栋, 王 利, 张志祥, 等. 大口径片状放大自发辐射效应的实验研究[J]. 中国激光, 2016, 43(6): 0601006.

    Cao Zhaodong, Wang Li, Zhang Zhixiang, et al. Experimental study on amplified spontaneous emission in large-aperture slab amplifiers[J]. Chinese J Lasers, 2016, 43(6): 0601006.

[3] 宗易昕, 夏建白, 武海斌. 介质/介质和金属/介质光子晶体的光子能带和光子态密度[J]. 激光与光电子学进展, 2016, 53(3): 031602.

    Zong Yixin, Xia Jianbai, Wu Haibin. Photonic band structure and state density of dielectric/dielectric and metal/dielectric photonic crystals[J]. Laser & Optoelectronics Progress, 2016, 53(3): 031602.

[4] van Kampen N G, Nijboer B R A, Schram K. On the macroscopic theory of van der Waals forces[J]. Physics Letters A, 1968, 26(307): 307-308.

[5] Gerlach E. Equivalence of van der Waals forces between solids and the surface-plasmon interaction[J]. Physical Review B, 1971, 4(2): 393-396.

[6] Pendry J B. Shearing the vacuum-quantum friction[J]. Journal of Physics: Condensed Matter, 1997, 9(47): 10301-10320.

[7] Mulet J P, Joulain K, Carminati R, et al. Enhanced radiative heat transfer at nanometric distances[J]. Microscale Thermophysical Engineering, 2002, 6(3): 209-222.

[8] Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics[J]. Applied Physics Letters, 2003, 82(20): 3544-3546.

[9] Fu C J, Zhang Z M. Nanoscale radiation heat transfer for silicon at different doping levels[J]. International Journal of Heat and Mass Transfer, 2006, 49(9): 1703-1718.

[10] Fu C J, Tan W C. Near-field radiative heat transfer between two plane surfaces with one having a dielectric coating[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110: 1027-1036.

[11] Wang T B, Liu N H, Liu J T, et al. Quantum friction controlled by plasmons between graphene sheets[J]. The European Physical Journal B, 2014, 87(185): 1-5.

[12] Buchanan M. Friction without contact[J]. Nature Physics, 2007, 3: 827.

[13] Saitoh K, Hayashi K, Shibayama Y, et al. Gigantic maximum of nanoscale noncontact friction[J]. Physical Review Letters, 2010, 105(23): 236103.

[14] She J H, Balatsky A V. Noncontact friction and relaxational dynamics of surface defects[J]. Physical Review Letters, 2012, 108(13): 136101.

[15] Volokitin A I, Persson B N J. Noncontact friction between nanostructures[J]. Physical Review B, 2003, 68(15): 155420.

[16] Zhao R K, PendryJ B, Manjavacas A, et al. Rotational quantum friction[J]. Physical Review Letters, 2012, 109(12): 123604.

[17] Volokitin A I, Persson B N J. Resonant photon tunneling enhancement of the radiative heat transfer[J]. Physical Review B, 2004, 69(4): 045417.

[18] Volokitin A I, Persson B N J. Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2[J]. Physical Review B, 2011, 83(24): 241407.

[19] Svetovoy V B, van Zwol P J, Chevrier J. Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics[J]. Physical Review B, 2012, 85(15): 155418.

[20] Ilic O, Joannopoulos J D, Soljacˇic' M, et al. Near-field thermal radiation transfer controlled by plasmons in graphene[J]. Physical Review B, 2012, 85(15): 155422.

[21] Joulain K, Mulet J P, Marquier F, et al. Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field[J]. Surface Science Reports, 2005, 57: 59-112.

[22] Joulain K, Carminati R, Mulet J P, et al. Definition and measurement of the local density of electromagnetic states close to an interface[J]. Physical Review B, 2003, 68(24): 245405.

[23] Wijnands F, Pendry J B, Garcia-Vidal F J, et al. Green′s functions for Maxwell's equations application to spontaneous emission[J]. Optical Quantum Electron, 1997, 29: 199-216.

[24] Falkovsky L A, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer[J]. Physical Review B, 2007, 76(15): 153410.

[25] Falkovsky L A. Optical properties of graphene[J]. Journal Physics: Conference Series, 2008, 129(1): 012004.

[26] Stauber T, Peres N M R, Geim A K. Optical conductivity of graphene in the visible region of the spectrum[J]. Physical Review B, 2008, 78(8): 085432.

[27] 刘伟光, 胡 滨, 李 彪, 等. 基于石墨烯-金属复合结构的光学调制器研究进展[J]. 激光与光电学子进展, 2016, 53(3): 030005.

    Liu Weiguang, Hu Bin, Li Biao, et al. Research progress of optical modulator based on graphene-metal composite structures[J]. Laser & Optoelectronics Progress, 2016, 53(3): 030005.

[28] Messina R, Hugonin J P, Greffet J J, et al. Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons[J]. Physical Review B, 2013, 87(8): 085421.

[29] 韩清瑶, 汤俊涛, 张 弨, 等. 局域态密度对表面等离激元特性影响的研究[J]. 物理学报, 2012, 61(13): 135202.

    Han Qingyao, Tang Juntao, Zhang Chao, et al. The effects of local density of states on surface plasmon polaritons[J]. Acta Physica Sinicia, 2012, 61(13): 135202.

[30] Levene M J, Korlach J, Turner S W, et al. Zero-mode waveguides for single-molecule analysis at high concentrations[J]. Science, 2003, 299: 682-686.

[31] 魏清泉, 李运涛, 任鲁风, 等. 零模波导原理、制备及其在单分子荧光检测中的应用[J]. 生物技术进展, 2015, 5(1): 10-21.

    Wei Qingquan, Li Yuntao, Ren Lufeng, et al. Zero-mode waveguides: The principle, fabrication and application in detection of single fluorescent molecules[J]. Current Biotechnology, 2015, 5(1): 10-21.

[32] Martin W E, Srijanto B R, Collier C P, et al. A comparison of single molecule emission in aluminum and gold zero-mode waveguides[J]. Journal of Physical Chemistry A, 2016, 120(34): 6719-6727.

[33] Castner D G, Ratner B D. Biomedical surface science: Foundations to frontiers[J]. Surface Science, 2002, 500: 28-60.

[34] Zhao J, Branagan S P, Bohn P W. Single-molecule enzyme dynamics of monomeric sarcosine oxidase in a gold-based zero-mode waveguide[J]. Applied Spectroscopy, 2012, 66(2): 163-169.

[35] Bediaga I, Gbel C, Méndez-Galain R. On the Dalitz plot approach in nonleptonic charm meson decays[J]. Physical Review Letters, 1997, 78(1): 22-25.

[36] Halevi P, Krokhin A A, Arriaga J. Photonic crystal optics and homogenization of 2D periodic composites[J]. Physical Review Letters, 1999, 82(4): 719-122.

[37] Krokhin A A, Halevi P, Arriaga J. Long-wavelength limit (homogenization) for two-dimensional photonic crystals[J]. Physical Review B, 2002, 65(11): 115208.

[38] Palik E. Handbook of optical constants of solids[M]. New York: Academic Press, 1998: 120.

周婷, 王同标, 廖清华, 刘江涛, 于天宝, 刘念华. 周期性孔阵列金属表面附近的局域态密度[J]. 激光与光电子学进展, 2017, 54(7): 072401. Zhou Ting, Wang Tongbiao, Liao Qinghua, Liu Jiangtao, Yu Tianbao, Liu Nianhua. Local Density of States Near Surface of Metal with Periodic Hole Arrays[J]. Laser & Optoelectronics Progress, 2017, 54(7): 072401.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!