激光与光电子学进展, 2017, 54 (7): 072401, 网络出版: 2017-07-05  

周期性孔阵列金属表面附近的局域态密度 下载: 746次

Local Density of States Near Surface of Metal with Periodic Hole Arrays
作者单位
1 南昌大学物理系, 江西 南昌 330031
2 南昌大学高等研究院, 江西 南昌 330031
摘要
研究了具有周期性孔阵列的金属表面附近的电磁局域态密度(EM-LDOS),详细讨论了孔的填充因子和孔内填充介质对EM-LDOS的影响。相对于金属平板,具有孔阵列的金属表面附近的EM-LDOS的共振峰会发生分裂;随着填充因子的增加,横向表面等离子体激元的共振峰向低频方向移动,而纵向表面等离子体激元的共振峰向高频方向移动。当孔内填充具有更大介电常数的材料时,EM-LDOS谱中分裂的两个峰都会向低频方向移动,但低频峰的移动相对于高频峰的更为显著。
Abstract
The electromagnetic local density of states (EM-LDOS) near the surface of metal with periodic hole arrays is studied. The influences of the filling factor and the filling material in holes on the EM-LDOS are also discussed. Compared with that near the surface of the metal plate, the EM-LDOS resonance peak near the surface of metals with periodic hole arrays can split. When the filling factor increases, the resonance peak of transverse surface plasmon polaritons shifts in the low-frequency direction, while the resonance peak of longitudinal surface plasmon polaritons shifts in the high-frequency direction. When the dielectric constant of the filling material increases, both of the splitted peaks shift in the low-frequency direction, while the low-frequency peak shifts more remarkably.
参考文献

[1] 周 军, 李 娟, 王庆丰, 等. 基于自发辐射抑制的红外光机系统优化设计[J]. 光学学报, 2015, 35(3): 0322003.

    Zhou Jun, Li Juan, Wang Qingfeng, et al. Optimized design of infrared opto-mechanical systems based on the spontaneous suppression[J]. Acta Optica Sinica, 2015, 35(3): 0322003.

[2] 曹兆栋, 王 利, 张志祥, 等. 大口径片状放大自发辐射效应的实验研究[J]. 中国激光, 2016, 43(6): 0601006.

    Cao Zhaodong, Wang Li, Zhang Zhixiang, et al. Experimental study on amplified spontaneous emission in large-aperture slab amplifiers[J]. Chinese J Lasers, 2016, 43(6): 0601006.

[3] 宗易昕, 夏建白, 武海斌. 介质/介质和金属/介质光子晶体的光子能带和光子态密度[J]. 激光与光电子学进展, 2016, 53(3): 031602.

    Zong Yixin, Xia Jianbai, Wu Haibin. Photonic band structure and state density of dielectric/dielectric and metal/dielectric photonic crystals[J]. Laser & Optoelectronics Progress, 2016, 53(3): 031602.

[4] van Kampen N G, Nijboer B R A, Schram K. On the macroscopic theory of van der Waals forces[J]. Physics Letters A, 1968, 26(307): 307-308.

[5] Gerlach E. Equivalence of van der Waals forces between solids and the surface-plasmon interaction[J]. Physical Review B, 1971, 4(2): 393-396.

[6] Pendry J B. Shearing the vacuum-quantum friction[J]. Journal of Physics: Condensed Matter, 1997, 9(47): 10301-10320.

[7] Mulet J P, Joulain K, Carminati R, et al. Enhanced radiative heat transfer at nanometric distances[J]. Microscale Thermophysical Engineering, 2002, 6(3): 209-222.

[8] Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics[J]. Applied Physics Letters, 2003, 82(20): 3544-3546.

[9] Fu C J, Zhang Z M. Nanoscale radiation heat transfer for silicon at different doping levels[J]. International Journal of Heat and Mass Transfer, 2006, 49(9): 1703-1718.

[10] Fu C J, Tan W C. Near-field radiative heat transfer between two plane surfaces with one having a dielectric coating[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110: 1027-1036.

[11] Wang T B, Liu N H, Liu J T, et al. Quantum friction controlled by plasmons between graphene sheets[J]. The European Physical Journal B, 2014, 87(185): 1-5.

[12] Buchanan M. Friction without contact[J]. Nature Physics, 2007, 3: 827.

[13] Saitoh K, Hayashi K, Shibayama Y, et al. Gigantic maximum of nanoscale noncontact friction[J]. Physical Review Letters, 2010, 105(23): 236103.

[14] She J H, Balatsky A V. Noncontact friction and relaxational dynamics of surface defects[J]. Physical Review Letters, 2012, 108(13): 136101.

[15] Volokitin A I, Persson B N J. Noncontact friction between nanostructures[J]. Physical Review B, 2003, 68(15): 155420.

[16] Zhao R K, PendryJ B, Manjavacas A, et al. Rotational quantum friction[J]. Physical Review Letters, 2012, 109(12): 123604.

[17] Volokitin A I, Persson B N J. Resonant photon tunneling enhancement of the radiative heat transfer[J]. Physical Review B, 2004, 69(4): 045417.

[18] Volokitin A I, Persson B N J. Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2[J]. Physical Review B, 2011, 83(24): 241407.

[19] Svetovoy V B, van Zwol P J, Chevrier J. Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics[J]. Physical Review B, 2012, 85(15): 155418.

[20] Ilic O, Joannopoulos J D, Soljacˇic' M, et al. Near-field thermal radiation transfer controlled by plasmons in graphene[J]. Physical Review B, 2012, 85(15): 155422.

[21] Joulain K, Mulet J P, Marquier F, et al. Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field[J]. Surface Science Reports, 2005, 57: 59-112.

[22] Joulain K, Carminati R, Mulet J P, et al. Definition and measurement of the local density of electromagnetic states close to an interface[J]. Physical Review B, 2003, 68(24): 245405.

[23] Wijnands F, Pendry J B, Garcia-Vidal F J, et al. Green′s functions for Maxwell's equations application to spontaneous emission[J]. Optical Quantum Electron, 1997, 29: 199-216.

[24] Falkovsky L A, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer[J]. Physical Review B, 2007, 76(15): 153410.

[25] Falkovsky L A. Optical properties of graphene[J]. Journal Physics: Conference Series, 2008, 129(1): 012004.

[26] Stauber T, Peres N M R, Geim A K. Optical conductivity of graphene in the visible region of the spectrum[J]. Physical Review B, 2008, 78(8): 085432.

[27] 刘伟光, 胡 滨, 李 彪, 等. 基于石墨烯-金属复合结构的光学调制器研究进展[J]. 激光与光电学子进展, 2016, 53(3): 030005.

    Liu Weiguang, Hu Bin, Li Biao, et al. Research progress of optical modulator based on graphene-metal composite structures[J]. Laser & Optoelectronics Progress, 2016, 53(3): 030005.

[28] Messina R, Hugonin J P, Greffet J J, et al. Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons[J]. Physical Review B, 2013, 87(8): 085421.

[29] 韩清瑶, 汤俊涛, 张 弨, 等. 局域态密度对表面等离激元特性影响的研究[J]. 物理学报, 2012, 61(13): 135202.

    Han Qingyao, Tang Juntao, Zhang Chao, et al. The effects of local density of states on surface plasmon polaritons[J]. Acta Physica Sinicia, 2012, 61(13): 135202.

[30] Levene M J, Korlach J, Turner S W, et al. Zero-mode waveguides for single-molecule analysis at high concentrations[J]. Science, 2003, 299: 682-686.

[31] 魏清泉, 李运涛, 任鲁风, 等. 零模波导原理、制备及其在单分子荧光检测中的应用[J]. 生物技术进展, 2015, 5(1): 10-21.

    Wei Qingquan, Li Yuntao, Ren Lufeng, et al. Zero-mode waveguides: The principle, fabrication and application in detection of single fluorescent molecules[J]. Current Biotechnology, 2015, 5(1): 10-21.

[32] Martin W E, Srijanto B R, Collier C P, et al. A comparison of single molecule emission in aluminum and gold zero-mode waveguides[J]. Journal of Physical Chemistry A, 2016, 120(34): 6719-6727.

[33] Castner D G, Ratner B D. Biomedical surface science: Foundations to frontiers[J]. Surface Science, 2002, 500: 28-60.

[34] Zhao J, Branagan S P, Bohn P W. Single-molecule enzyme dynamics of monomeric sarcosine oxidase in a gold-based zero-mode waveguide[J]. Applied Spectroscopy, 2012, 66(2): 163-169.

[35] Bediaga I, Gbel C, Méndez-Galain R. On the Dalitz plot approach in nonleptonic charm meson decays[J]. Physical Review Letters, 1997, 78(1): 22-25.

[36] Halevi P, Krokhin A A, Arriaga J. Photonic crystal optics and homogenization of 2D periodic composites[J]. Physical Review Letters, 1999, 82(4): 719-122.

[37] Krokhin A A, Halevi P, Arriaga J. Long-wavelength limit (homogenization) for two-dimensional photonic crystals[J]. Physical Review B, 2002, 65(11): 115208.

[38] Palik E. Handbook of optical constants of solids[M]. New York: Academic Press, 1998: 120.

周婷, 王同标, 廖清华, 刘江涛, 于天宝, 刘念华. 周期性孔阵列金属表面附近的局域态密度[J]. 激光与光电子学进展, 2017, 54(7): 072401. Zhou Ting, Wang Tongbiao, Liao Qinghua, Liu Jiangtao, Yu Tianbao, Liu Nianhua. Local Density of States Near Surface of Metal with Periodic Hole Arrays[J]. Laser & Optoelectronics Progress, 2017, 54(7): 072401.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!