光电工程, 2019, 46 (12): 180659, 网络出版: 2020-01-09  

连续激光辐照金属靶材温升分析

Analysis of temperature rise of metal targets irradiated by CW laser
作者单位
1 浙江大学光电科学与工程学院,浙江 杭州 310000
2 新疆乌鲁木齐21信箱192分箱,新疆 乌鲁木齐 841700
3 河南开封魏都路68号180分箱,河南 开封 475000
摘要
本文对连续激光辐照金属材料的峰值温度变化情况进行研究,建立了连续激光辐照材料的有限元分析模型,采用仿真分析的方法对连续激光照射铝合金圆板的峰值温度变化情况进行了研究。通过对光束抖动、光斑扩散、空气对流、材料表面氧化等不同条件仿真结果的分析,给出了各种因素对激光辐照材料峰值温度变化情况的影响,并利用等效材料比热容的方法开展了相变潜热对温升情况的影响分析。最后综合各种条件给出了在连续激光辐照铝合金材料的峰值温度变化情况,对材料的损伤进行了分析。
Abstract
The variation of peak temperature of metal materials irradiated by continuous wave (CW) laser is studied in this paper. We established a finite element model of metal materials irradiated by CW laser. The variation of peak temperature of aluminum alloy circular plates irradiated by CW laser is studied by simulation analysis method. By analyzing the simulation results under different conditions, such as beam drift, spot diffusion, air convection and material surface oxidation, the effects of various factors on the peak temperature of laser-irradiated materials are given, and the influence of latent heat of phase change on temperature rise is analyzed by using the method of equivalent material specific heat capacity. Finally, according to various conditions, the change of peak temperature of aluminum alloy irradiated by CW laser is given, and the damage of aluminum alloy is analyzed.
参考文献

[1] 宋乃秋, 张昊春, 马超, 等. 高能激光武器毁伤机理多物理场建模[J]. 化工学报, 2016, 67(S1): 359–365.

    Song N Q, Zhang H C, Mao C, et al. Multiple physical modeling for damage mechanism of high energy laser weapon[J]. CIESC Journal, 2016, 67(S1): 359–365.

[2] 蒋艳锋, 江东, 钟鸣, 等. 长脉冲激光对金属材料热破坏的分析[J]. 激光杂志, 2006, 27(2): 75–76.

    Jiang Y F, Jiang D, Zhong M, et al. Theoretical research: the thermal damage of matel materials, under millisecond - pulsed laser irradiations[J]. Laser Journal, 2006, 27(2): 75–76.

[3] Darif M, Semmar N. Numerical simulation of Si nanosecond laser annealing by COMSOL multiphysics[C]//Proceedings of the COMSOL Conference 2008 Hannover. Hannover, 2008: 567–571.

[4] Hanon M M, Akman E, Oztoprak B G, et al. Experimental and theoretical investigation of the drilling of alumina ceramic using Nd: YAG pulsed laser[J]. Optics & Laser Technology, 2012, 44(4): 913–922.

[5] Kuang J H, Hung T P, Chen C K. A keyhole volumetric model for weld pool analysis in Nd: YAG pulsed laser welding[J]. Optics & Laser Technology, 2012, 44(5): 1521–1528.

[6] 裴旭, 吴建华. 金属材料脉冲激光辐照瞬态温度场数值模拟研究[J]. 激光技术, 2012, 36(6): 828–831.

    Pei X, Wu J H. Numerical simulation of transient temperature field on metal material induced by pulse laser irradiation[J]. Laser Technology, 2012, 36(6): 828–831.

[7] 姚红兵, 高原, 袁冬青, 等. 激光辐照铝材表面温度场特征演化的数值模拟[J]. 激光与红外, 2015, 45(10): 1175–1179.

    Yao H B, Gao Y, Yuan D Q, et al. Numerical simulation of characteristics evolution of aluminum surface temperature field irradiated by laser[J]. Laser & Infrared, 2015, 45(10): 1175–1179.

[8] 孙承纬. 激光辐照效应[M]. 北京: 国防工业出版社, 2002.

    Sun C W. Effect of Laser Irradiation[M]. Beijing: National Defense Industry Press, 2002.

[9] 徐立君, 张喜和, 倪晓武, 等. 不同光斑半径的连续激光作用金属靶材的温度场[J]. 红外与激光工程, 2007, 36(S1): 632–635.

    Xu L J, Zhang X H, Ni X W, et al. Temperature field of the CW-laser with different radius irradiating metal plates irradiating metal plate[J]. Infrared and Laser Engineering, 2007, 36(S1): 632–635.

[10] 徐斌, 赵选科, 王莲芬, 等. 强激光武器辐照弹道导弹温度场数值模拟[J]. 激光与红外, 2016, 46(12): 1526–1530.

    Xu B, Zhao X K, Wang L F, et al. Numerical simulation of the temperature field of the ballistic missile irradiated by high intensity laser[J]. Laser & Infrared, 2016, 46(12): 1526–1530.

[11] 李清源. 强激光对飞行器的毁伤效应[M]. 北京: 中国宇航出版社, 2012.

    Li Q Y. Damage Effects of Vehicles Irradiated by Intense Lasers[M]. Beijing: China Astronautic Publishing House, 2012.

[12] Brückner M, Sch?fer J H, Uhlenbusch J. Ellipsometric measurement of the optical constants of solid and molten aluminum and copper at λ=10.6μm[J]. Journal of Applied Physics, 1989, 66(3): 1326–1332.

[13] 王文宝, 张凯华, 于坤. Al5052和Al6061红外光谱发射率的对比研究[J]. 兴义民族师范学院学报, 2015(4): 110–114, 118.

    Wang W B, Zhang K H, Yu K. A comparative research on the infrared spectral emissivity of Al5052 and Al6061[J]. Journal of Xingyi Normal University for Nationalities, 2015(4): 110–114, 118.

[14] 张凯华, 于坤, 刘玉芳, 等. 大气环境中Al5052光谱发射率研究[J]. 河南师范大学学报(自然科学版), 2014, 42(1): 36–40.

    Zhang K H, Yu K, Liu Y F, et al. Normal spectral emissivity of AL5052 in atmospheric environment[J]. Journal of Henan Normal University (Natural Science Edition), 2014, 42(1): 36–40.

[15] 马健, 赵扬, 周凤艳, 等. 基于有限元的脉冲激光辐照材料温度场研究[J]. 激光与红外, 2015, 45(1): 27–31.

    Ma J, Zhao Y, Zhou F Y, et al. Study on temperature field of materials irradiated by pulse laser based on FEM[J]. Laser & Infrared, 2015, 45(1): 27–31.

[16] 魏向禹, 惠鑫刚, 梁智国. 铝合金表面微弧氧化与阳极氧化工艺介绍[J]. 中国金属通报, 2017(9): 69–70.

    Wei X Y, Hui X G, Liang Z G. Introduction of micro-arc oxidation and anodic oxidation technology on aluminum alloy surface[J]. China Metal Bulletin, 2017(9): 69–70.

[17] 刘宝明, 王燕燕, 沈志华, 等. 材料法向光谱发射率测定装置[J]. 计量学报, 1986, 7(3): 204–211.

    Liu B M, Wang Y Y, Shen Z H, et al. An apparatus for measuring normal spectral emittance of substances[J]. Acta Metrologica Sinica, 1986, 7(3): 204–211.

[18] 焦路光, 杨在富, 王嘉睿. 气流环境中激光烧蚀铝靶的数值模拟研究[J]. 激光与红外, 2016, 46(2): 145–149.

    Jiao L G, Yang Z F, Wang J R. Numerical simulation on laser ablation of aluminum target under tangential airflow[J]. Laser & Infrared, 2016, 46(2): 145–149.

[19] Radice J J, Joyce P J, Tresansky A C, et al. A COMSOL model of damage evolution due to high energy laser irradiation of partially absorptive materials[C]//Proceedings of the 2012 COMSOL Conference in Boston, Boston, 2012.

侯建辉, 刘崇, 景春元. 连续激光辐照金属靶材温升分析[J]. 光电工程, 2019, 46(12): 180659. Hou Jianhui, Liu Chong, Jing Chunyuan. Analysis of temperature rise of metal targets irradiated by CW laser[J]. Opto-Electronic Engineering, 2019, 46(12): 180659.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!