强激光与粒子束, 2012, 24 (9): 2094, 网络出版: 2012-09-12  

快速凝固Cu-1.5%Be合金的制备

Preparation of rapidly solidified Cu-1.5%Be alloy ribbon
作者单位
1 西南科技大学 极端条件物质特性实验室, 四川 绵阳 621010
2 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
摘要
采用单辊旋淬法制备了快速凝固Cu-1.5%Be合金(Be质量分数1.5%)薄带。根据热传输平衡方程对快速凝固冷却速率进行了估算,并借助X射线衍射仪、扫描电子显微镜对该合金的微观结构及相选择进行了分析。结果表明:当辊面线速度在29.93~39.19 m/s范围内时,合金冷却速率可达到9.80×105~1.63×106 K/s;随着辊轮转速的提高和喷注气压的减小,合金条带厚度和晶粒度逐渐变小;随着冷却速率的增加,溶质截留效果显著,合金相结构由复相向单相转变,当辊面线速度达到34.54 m/s时,Cu-1.5%Be合金可形成过饱和的α-Cu固溶体组织,且组织细小均匀,可获得纳米晶;条带横断面显微组织由接近辊面一侧的细小等轴晶区、中间的柱状晶区和靠近自由表面的等轴晶区组成。
Abstract
A Cu-1.5%Be alloy ribbon was prepared by single-roller rapid solidification method, and rapid solidification cooling rate was estimated according to the heat transport equilibrium equation. The microstructure and phase choice of the ribbon were characterized by powder X-ray diffraction and scanning electron microscopy. The results indicate that when the line speed of the roll surface is between 29.93 m/s and 39.19 m/s, the cooling rate can get to 9.80×105-1.63×106 K/s . With the increase of roller speed and the decrease of eject pressure, the thickness and grain size of the ribbon gradually decrease. With increasing cooling rate, the effect of solute trapping is enhanced, the phase structure changes from multiphase to single phase. As the line speed reaches to 34.54 m/s, the single phase α-Cu solid solution is formed in Cu-1.5%Be alloy, and the microstrcture of the ribbon becomes fine so that nanocrystalline could be formed. The cross-section microstructure of the alloy ribbon along the direction vertical to the wheel surface is characterized by fine equiaxed, columnar and coarse equiaxed gain.
参考文献

[1] 吴源道. 铍--性质、生产与利用[M]. 北京:冶金工业出版社,1986:134.(Wu Yuandao. Beryllium-properties, production and use. Beijing:Metallurgical Industry Press,1986:134)

[2] 朱建军.影响铍铜熔铸质量的因素及铸造铍铜的应用[J] .江苏冶金,2002,30(2):53-56.(Zhu Jianjun. Influence factors on the melting-casting quality of beryllium copper and application of casting beryllium copper. Jiangsu Metallurgy,2002,30(2):53-56)

[3] Douglas C W, Paul A B, Nelson M H, et al. The development and advantages of beryllium capsules for the National Ignition Facility[J]. Phys Plasmas,1998,5(5):1953-1959.

[4] Cook B, Letts S, Nikroo A, et al. Preliminary evaluation of techniques to fabricate beryllium, polyimide, and Ge-doped CH/CD ablator materials[R]. UCRL-TR-208476,2004.

[5] 李月珠.快速凝固技术和材料[M].北京:国防工业出版社,1993:15.(Li Yuezhu. Rapid solidification technology and material. Beijing: National Defense Industry Press,1993:15)

[6] Liu J, Zhao J Z, Hu Z Q. The development of microstructure in a rapidly solidified Cu[J]. Materials Science and Engineering A, 2007,452/453:103-109.

[7] Zhou Z M, Xiao Z P, Wei B W, et al. The numerical simulation of rapidly solidified Cu-Cr alloys[J]. Procedia Engineering,2012,29(1/2):3944-3948.

[8] Zhou Z M, Wang Y P, Gao J, et al. Microstructure of rapidly solidified Cu-25wt.% Cr alloys[J].Materials Science and Engineering A,2005,398(1/2):318-322.

[9] Battezzati L, Curiotto S , Johnson E. Undercooling and demixing in rapidly solidified Cu-Co alloys[J].Materials Science and Engineering A,2007,449/451:7-11.

[10] Erdemir F. Production of rapidly solidified Cu-Sn ribbons by water jet cooled rotating disc method[J]. Journal of Materials Processing Technology,2011,211 (11) :1817-1823.

[11] 胡汉起.金属凝固原理[M].北京:机械工业出版社,2008:255.(Hu Hanqi. Metal solidification principle. Beijing:China Machine Press,2008:255)

[12] 沈宁福,汤亚力,关绍康,等.凝固理论进展与快速凝固[J].金属学报,1996,32(7):673-684.(Shen Ningfu, Tang Yali,Guan Shaokang,et al. Solidification theory and rapid solidification. Acta Metallrugica Sinica, 1996,32(7):673-684)

[13] 杨扬,徐锦峰,翟秋亚.急冷条件下Cu-Sn合金的快速枝晶生长[J].中国有色金属学报,2007,17(9):1521-1526.(Yang Yang, Xu Jinfeng, Zhai Qiuya. Rapid dendritic growth in melt-spun Cu-Sn alloys. The Chinese Journal of Nonferrous Metals,2007,17(9):1521-1526)

[14] 徐锦峰,魏炳波.急冷快速凝固过程中液相流动与组织形成的相关规律[J].物理学报,2004,53(6):160-166.(Xu Jinfeng, Wei Bingbo. Liquid phase flow and microstructure formation during rapid solidification. Acta Physica Sinica,2004,53(6):160-166)

[15] 崔大田,王志法.快速凝固新型Au-Ag-Ge合金薄带的制备[J].材料热处理学报,2010,31(1):40-43.(Cui Datian, Wang Zhifa. Preparation of rapidly solidified new-type Au-Ag-Ge alloy ribbon. Transactions of Materials and Heat Treatment,2010,31(1):40-43)

[16] 路文江,俞伟元,陈学定,等. 非晶态合金钎料的制备[J].甘肃工业大学学报,1998,24(2):16-19.(Lu Wenjiang, Yu Weiyuan, Chen Xue-ding, et al.Preparation of Ni-based amorphous filler metal.Journal of Gansu University of Technology,1998,24(2):16-19)

[17] 向青春,周彼德,李荣德.快速凝固过程中熔液自旋工艺的比较[J].特种铸造及有色合金,2000(3):46-49.(Xiang Qingchun, Zhou Bide, Li Rongde. Comparison of melt spinning technique in rapid solidification process. Special Casting Nonferrous Alloys,2000(3):46-49)

[18] 侯增寿,卢光熙.金属学原理[M].上海:上海科学技术出版社,1989:120.(Hou Zengshou, Lu Guangxi. Metal science principle. Shanghai: Shanghai Science and Technology Press, 1989:120)

[19] 王志强, 刘楚明, 曾祥亮,等. 时效工艺对低铍铜力学性能与电导率的影响[J]. 湖南有色金属, 2007,23(6):30-32.(Wang Zhiqiang, Liu Chuming, Zeng Xiangliang, et al. Effect of aging process on mechanical property and conductivity of low beryllium bronze. Hunan Nonferrous Metals,2007,23(6):30-32)

谢华, 兰占军, 唐永建, 罗江山. 快速凝固Cu-1.5%Be合金的制备[J]. 强激光与粒子束, 2012, 24(9): 2094. Xie Hua, Lan Zhanjun, Tang Yongjian, Luo Jiangshan. Preparation of rapidly solidified Cu-1.5%Be alloy ribbon[J]. High Power Laser and Particle Beams, 2012, 24(9): 2094.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!