中国激光, 2017, 44 (2): 0201013, 网络出版: 2017-02-22   

基于分布式传感的全光纤放大器增益光纤纤芯温度测量

Temperature Measurement for Gain Fiber Core in All-Fiber Amplifier Based on Distributed Sensing
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
在高功率光纤激光器中,增益光纤的热效应是限制激光功率提高的重要因素之一。传统的温度测量方法只能测量到增益光纤的表面温度,无法得到增益光纤内部不同位置的温度。采用分布式光频域反射(OFDR)技术测量全光纤放大器中增益光纤纤芯的温度。对采用OFDR技术得到的温度测量结果进行了标定,验证了OFDR测量工作状态下放大器内增益光纤温度的准确性。测量了输出功率为6 W的全光纤放大器内增益光纤纤芯的温度分布,测量结果与理论相吻合。这种测温方法为未来高功率光纤激光器的温度监测提供参考。
Abstract
Thermal effect of the gain fiber is one of the main factors limiting the power improvement of high power fiber amplifiers. Using traditional temperature measurement methods, we can only obtain the surface temperature of fiber while the core temperature cannot be detected. In this paper, the temperature of the gain fiber core in an all-fiber amplifier is measured by optical frequency domain reflectometry (OFDR). Firstly, the temperature measurement results by OFDR are calibrated and the measuring accuracy of the gain fiber temperature is verified when the amplifier is in operation. Then, the temperature distribution of the gain fiber core in the all-fiber amplifier is measured when the output power is 6 W and the results agree with the current theoretical results. The temperature measurement method proposed can provide a reference for the temperature monitoring in high power fiber lasers in the future.
参考文献

[1] 王小林, 冷进勇, 杜文博, 等. 275 W MOPA结构全光纤窄线宽掺镱光纤激光器[J]. 中国激光, 2011, 38(3): 0308001.

    Wang Xiaolin, Leng Jinyong, Du Wenbo, et al. 275 W MOPA all fiber narrow linewidth ytterbium doped fiber laser[J]. Chinese J Lasers, 2011, 38(3): 0308001.

[2] 王小林, 龚智群, 周 朴, 等. 国产全光纤激光器实现525 W高功率输出[J]. 中国激光, 2012, 39(4): 0408007.

[3] 王小林, 陶汝茂, 张汉伟, 等. 1 kW单端抽运、高光束质量、高稳定性全光纤激光振荡器[J]. 中国激光, 2014, 41(11): 1105001.

    Wang Xiaolin, Tao Rumao, Zhang Hanwei, et al. 1 kilowatt single-end pumped all-fiber laser oscillator with good beam quality and high stability [J].Chinese J Lasers, 2014, 41(11): 1105001.

[4] 王小林, 张汉伟, 陶汝茂, 等. LD抽运主振荡功率放大结构4.1 kW 全光纤激光器[J]. 中国激光, 2016, 43(5): 0502002.

    Wang Xiaolin, Zhang Hanwei, Tao Rumao, et al. Laser diode pumped 4.1 kW all-fiber laser with master oscillator power amplification configuration[J]. Chinese J Lasers, 2016, 43(5): 0502002.

[5] Zervas M N, Codemard C A. High power fiber lasers: a review [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 0904123.

[6] Fan Y Y, He B, Zhou J, et al. Thermal effects in kilowatt all-fiber MOPA[J]. Optics Express, 2011, 19(16): 15162-15172.

[7] 王小林, 周 朴, 肖 虎, 等. 窄线宽全光纤激光器实现666 W高功率输出[J]. 强激光与粒子束, 2012, 24(6): 1261-1262.

    Wang Xiaolin, Zhou Pu, Xiao Hu, et al. Narrow linewidth all-fiber laser with 666 W power output[J]. High Power Laser and Particle Beams, 2012, 24(6): 1261-1262.

[8] Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 2012, 20(10): 11407-11422.

[9] Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers[C]. SPIE, 2014, 8961: 89611R.

[10] Wang X L, Zhou P, Leng J Y, et al. A 330-W single-frequency retrievable multi-tone monolithic fiber amplifier[J]. Chinese Physics B, 2013, 22(4): 044205.

[11] Wang X, Leng J, Zhou P, et al. 1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array[J]. Applied Physics B: Lasers and Optics, 2012, 107(3): 785-790.

[12] Wang X L, Zhou P, Xiao H, et al. 310 W single-frequency all-fiber laser in master oscillator power amplification configuration[J]. Laser Physics Letters, 2012, 9(8): 591-595.

[13] Froggatt M E, Gifford D K, Kreger S, et al. Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry[J]. Journal of Lightwave Technology, 2006, 24(11): 4149-4154.

[14] 周子超, 王小林, 粟荣涛, 等. 分布式光纤传感在光纤激光中的应用研究[J]. 激光与光电子学进展, 2016, 53(8): 080006.

    Zhou Zichao, Wang Xiaolin, Su Rongtao, et al. Application of distributed fiber sensing in fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080006.

[15] Beier F, Heinzig M, Haarlammert N, et al. In situ temperature measurement in high power fiber amplifiers[C]. ECLEO-EQEC, 2015: CJ-10-6.

[16] Beier F, Heinzig M, Walbaum T, et al. Determination of thermal load from core temperature measurements in single mode ytterbium-doped fiber amplifiers[C]. ECLEO-EQEC, 2015: ATh2A.23

[17] Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applied Physics Letter, 1981, 39(9): 693-695.

周子超, 王小林, 张汉伟, 粟荣涛, 韩凯, 周朴, 许晓军. 基于分布式传感的全光纤放大器增益光纤纤芯温度测量[J]. 中国激光, 2017, 44(2): 0201013. Zhou Zichao, Wang Xiaolin, Zhang Hanwei, Su Rongtao, Han Kai, Zhou Pu, Xu Xiaojun. Temperature Measurement for Gain Fiber Core in All-Fiber Amplifier Based on Distributed Sensing[J]. Chinese Journal of Lasers, 2017, 44(2): 0201013.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!