光学 精密工程, 2017, 25 (10): 2627, 网络出版: 2017-11-24   

地基大口径望远镜伺服系统的抗扰动设计

Disturbance rejection control for large ground-based telescope
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 东北师范大学 物理学院, 吉林 长春 130024
摘要
针对地基大口径望远镜伺服系统的抗扰动问题, 提出了一种抗扰动控制算法。该算法采用双闭环控制结构: 内环为高带宽的电流环, 采用PI控制器; 外环为速度环; 采用线性自抗扰控制器, 通过线性扩张状态观测器辨识出系统扰动, 然后将该扰动前馈到系统控制量中去, 构成复合校正系统。为解决大动态输入引起的控制器饱和问题, 状态观测器的输入控制量加入了抗饱和控制算法, 保证了系统的稳定性和良好的动态特性。仿真和实验结果表明: 与传统的PI控制器相比, 引入抗饱和功能的自抗扰控制器在高低速均可以获得良好的动态性能; 在低速平稳跟踪实验中, 速度波动误差(RMS)由0.000 68 (°)/s降低到0.000 32 (°)/s。实验结果证明提出的方法能够有效提高伺服系统抗扰动能力和速度跟踪的平稳性。
Abstract
An improved disturbance rejection control algorithm was proposed to overcome the velocity fluctuation caused by the disturbance torque in a large ground-based telescope. The algorithm consists of two closed-loop structures, an inner high-bandwidth current loop and an outer speed loop. The inner current loop is a PI controller. The outer loop is a speed controller adopting the linear active disturbance rejection controller. For the speed loop, an extended state observer is used to estimate the system disturbances, and the estimated disturbance is fed into the control system to form a composite correction system. To solve the problem of controller saturation caused by the large dynamic input, an anti-windup control algorithm was induced the input of the extended state observer to guarantee the stability and good dynamic characteristics of the system. The simulation and experimental results show that linear active disturbance rejection controller with anti-windup achieves fast response without overshoot at both high or low speeds as compared with the PI controller. In a low speed smoothing experiment, the algorithm improves the RMS value of speed error from 0.000 68(°)/s to 0.000 32(°)/s. Experimental results demonstrate that the proposed algorithm effectively reduces the velocity fluctuation of the servo system caused by the motor torque ripple and improves its speed smooth.
参考文献

[1] BELY P Y. 大型光学望远镜的设计与建造[M]. 高昕, 王建立, 唐嘉, 译. 北京: 清华大学出版社, 2015.

    BELY P Y. The Design and Construction of Large Optical Telescope[M]. GAO X, WANG J L, TANG J, Trans.. Beijing: Tsinghua University Press, 2015. (in Chinese)

[2] 王国民. 天文光学望远镜轴系驱动方式发展概述[J]. 天文学进展, 2007, 25(4): 364-374.

    WANG G M. Review of drive style for astronomical optical telescope[J]. Progress in Astronomy, 2007, 25(4): 364-374. (in Chinese)

[3] SUREZ M, ROSICH J, ORTEGA J, et al.. The GTC main axes servos and control system[J]. SPIE, 2008, 7019: 70190J1.

[4] MIYAWAKI K, ITOH N, SUGIYAMA R, et al.. Mechanical structure for the SUBARU telescope[J]. SPIE, 1994, 2199: 754-761.

[5] GUTIERREZ P. Standardization of direct drive servos in telescope applications[J]. SPIE, 2003, 4837: 325-335.

[6] SEDGHI B, MLLER M, BONNET H, et al.. Field stabilization (tip/tilt control) of E-ELT[J]. SPIE, 2010, 7733: 773340.

[7] MACMYNOWSKI D G, BLAUROCK C, ANGELI G Z. Dynamic analysis of TMT[J].SPIE, 2008, 7017: 70170W.

[8] 马佳光. 捕获跟踪与瞄准系统的基本技术问题[J]. 光学工程, 1989, 81(3): 1-42.

    MA J G. The basic technologies of the acquisition, tracking and pointing systems[J]. Optical Engineer, 1989, 81(3): 1-42. (in Chinese)

[9] MANCINI D, BRESCIA M, CASCONE E, et al.. Variable structure control law for telescope pointing and tracking[J]. SPIE, 1997, 3086: 72-84.

[10] 黄永梅, 张桐, 马佳光, 等. 高精度跟踪控制系统中电流环控制技术研究[J]. 光电工程, 2005, 32(1): 16-19, 35.

    HUANG Y M, ZHANG T, MA J G, et al.. Study on the control of a current loop in a high-accuracy tracking and control system[J]. Opto-Electronic Engineering, 2005, 32(1): 16-19, 35. (in Chinese)

[11] 熊皑, 范永坤, 吴钦章. 光电跟踪系统力矩波动干扰抑制的研究[J]. 电光与控制, 2009, 16(4): 72-74, 81.

    XIONG A, FAN Y K, WU Q ZH. On restraining of disturbance caused by momentum fluctuation of optoelectronic tracking system[J]. Electronics Optics & Control, 2009, 16(4): 72-74, 81. (in Chinese)

[12] SEDGHI B, BAUVIR B, DIMMLER M. Acceleration feedback control on an AT[J]. SPIE, 2008, 7012: 70121Q.

[13] SMITH D R, SOUCCAR K. Friction compensation strategies in large telescopes[J]. SPIE, 2010, 7733: 77332.

[14] 周旺平, 徐欣圻. 大型天文光学望远镜超低速跟踪控制[J]. 光电工程, 2007, 34(11): 1-4.

    ZHOU W P, XU X Q. Ultra-lower velocity control of large-scale optical astronomical telescope[J]. Opto-Electronic Engineering, 2007, 34(11): 1-4. (in Chinese)

[15] 邓永停, 李洪文, 王建立, 等. 基于预测函数控制和扰动观测器的永磁同步电机速度控制[J]. 光学 精密工程, 2014, 22(6): 1598-1605.

    DENG Y T, LI H W, WANG J L, et al.. Speed control for PMSM based on predictive functional control and disturbance observer[J]. Opt. Precision Eng., 2014, 22(6): 1598-1605. (in Chinese)

[16] 邓永停, 李洪文, 王建立, 等. 基于自适应滑模控制的大型望远镜低速控制[J]. 中国光学, 2016, 9(6): 713-720.

    DENG Y T, LI H W, WANG J L, et al.. Large telescope low speed control based on adaptive sliding mode control[J]. Chinese Optics, 2016, 9(6): 713-720. (in Chinese)

[17] 宋彦, 高慧斌, 张淑梅, 等. 直流力矩电机力矩波动的自适应补偿控制[J]. 光学 精密工程, 2010, 18(10): 2212-2220.

    SONG Y, GAO H B, ZHANG SH M, et al.. Adaptive compensation of torque ripple in DC torque motor[J]. Opt. Precision Eng., 2010, 18(10): 2212-2220. (in Chinese)

[18] FRANKE T, WEADON T, FORD J, et al.. An iterative model-based cogging compensator for the green bank telescope servo system[J]. SPIE, 2014, 9145: 914555.

[19] 邓永停, 李洪文, 王建立. 大型望远镜交流伺服控制系统综述[J]. 中国光学, 2015, 8(6): 895-908.

    DENG Y T, LI H W, WANG J L. Overview of AC servo control system for the large telescope[J]. Chinese Optics, 2015, 8(6): 895-908. (in Chinese)

[20] 黄一, 张文革. 自抗扰控制器的发展[J]. 控制理论与应用, 2002, 19(4): 485-492.

    HUANG Y, ZHANG W G. Development of active disturbance rejection controller[J]. Control Theory and Applications, 2002, 19(4): 485-492. (in Chinese)

[21] GAO Z Q, HUANG Y, HAN J Q. An alternative paradigm for control system design[C]. Proceedings of the 40th IEEE Conference on Decision and Control, IEEE, 2001: 4578-4585.

[22] MIKLOSOVIC R, GAO Z Q. A robust two-degree-of-freedom control design technique and its practical application[C]. Proceedings of the 39th IAS Annual Meeting, Conference Record of the 2004 IEEE Industry Applications Conference, IEEE, 2004: 1495-1502.

[23] 王帅, 李洪文, 孟浩然, 等. 光电望远镜伺服系统速度环的自抗扰控制[J]. 光学 精密工程, 2011, 19(10): 2442-2449.

    WANG SH, LI H W, MENG H R, et al.. Active disturbance rejection controller for speed-loop in telescope servo system[J]. Opt. Precision Eng., 2011, 19(10): 2442-2449. (in Chinese)

[24] 王帅, 王建立, 李洪文, 等. 光电跟踪系统力矩波动的自抗扰控制[J]. 光电工程, 2012, 39(4): 7-13.

    WANG SH, WANG J L, LI H W, et al.. Active disturbance rejection control of torque ripple on optoelectronic tracking system[J]. Opto-Electronic Engineering, 2012, 39(4): 7-13. (in Chinese)

[25] 杨晓霞, 孟浩然, 李玉霞, 等. 具有扰动观测及实时补偿的大型光电望远镜主轴控制技术[J]. 国外电子测量技术, 2014, 33(11): 56-61.

    YANG X X, MENG H R, LI Y X, et al.. Mount control technology using disturbance observer and compensation for large opto-electronic telescopses[J]. Foreign Electronic Measurement Technology, 2014, 33(11): 56-61. (in Chinese)

[26] 杨晓霞, 王帅, 邓永停, 等. 利用扩张状态观测器的交流永磁同步电机控制[J]. 电子测量与仪器学报, 2016, 30(5): 810-816.

    YANG X X, WANG SH, DENG Y T, et al.. PMSM control using extended state observer[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(5): 810-816. (in Chinese)

[27] 周宏, 谭文. 线性自抗扰控制的抗饱和补偿措施[J]. 控制理论与应用, 2014, 31(11): 1457-1463.

    ZHOU H, TAN W. Anti-windup schemes for linear active disturbance rejection control[J]. Control Theory & Applications, 2014, 31(11): 1457-1463. (in Chinese)

王帅, 邓永停, 朱娟. 地基大口径望远镜伺服系统的抗扰动设计[J]. 光学 精密工程, 2017, 25(10): 2627. WANG Shuai, DENG Yong-ting, ZHU Juan. Disturbance rejection control for large ground-based telescope[J]. Optics and Precision Engineering, 2017, 25(10): 2627.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!