激光技术, 2018, 42 (3): 331, 网络出版: 2018-05-29  

脉冲能量对不锈钢表面微观形貌影响规律研究

Study on influence of pulsed laser energy on microstructure of stainless steel
作者单位
长春理工大学 机电工程学院, 长春 130022
摘要
为了研究空气中飞秒激光脉冲能量对不锈钢表面形成周期性结构的影响规律, 采用脉宽为50fs、中心波长为800nm的飞秒激光辐射304不锈钢表面, 利用扫描电子显微镜观察微观形貌, 分析了不同种类波纹的产生机理。结果表明,脉冲能量在0.1mJ~0.3mJ时, 表面形成垂直于激光偏振方向的纳米级周期性波纹; 脉冲能量在0.4mJ~0.7mJ时, 表面有产生平行于激光偏振方向的周期性波纹的趋势; 脉冲能量在0.8mJ~1.0mJ时, 表面出现明显的平行于激光偏振方向的微米级大尺度周期性波纹, 且波纹表面覆盖着与其方向垂直的短周期性波纹。该研究为后续在不锈钢表面制备可控微观形貌奠定了基础。
Abstract
In order to study effect of femtosecond laser pulse energy on the periodic structure of stainless steel surface, the femtosecond laser with pulse width of 50fs and central wavelength of 800nm was used to radiate 304 stainless steel surfaces. Scanning electron microscopy was used to observe the micromorphology and the generation mechanism of different kinds of ripples was analyzed. The results show that with pulse energy from 0.1mJ to 0.3mJ, nanoscale periodic ripple perpendicular to the direction of laser polarization is formed on the surface. With pulse energy from 0.4mJ to 0.7mJ, there is a tendency to produce periodic ripples parallel to the direction of laser polarization. With pulse energy from 0.8mJ to 1.0mJ, obvious micron-scale periodic corrugation parallel to the polarization direction of laser appears on the surface, and the corrugation surface is covered with short periodic corrugation perpendicular to its direction. The study lays the foundation for the subsequent preparation of controllable micromorphology on the surface of stainless steel.
参考文献

[1] CAPELLO E, CHIARELLO P, PREVITALI B. Laser welding and urface treatment of a 22Cr-5Ni-2Mo duplex stainless steel[J]. Materials Science and Engineering, 2003,A351(1):334-343.

[2] TRTICA M S, GAKOVIC B M. Surface modification of stainles steels by TEA CO2 laser[J]. Applied Surface Science, 2001, 177(1/2):48-57.

[3] BONSE J, HHM S, ROSENFELD A, et al. Sub-100nm laser-induced periodic surface structures upon irradiation of titanium by Ti∶sapphire femtosecond laser pulses in air[J]. Applied Physics, 2013, A110(3): 547-551.

[4] BIGERELLE M, ANSELME K. A kinetic approach to osteoblast adhension on biomaterial surface[J]. Journal of Biomedical Materials Research Part, 2005, A75(3): 530-540.

[5]

    BIRNBAUM M. Semiconductor surface damage produced by ruby lasers[J]. Journal of Applied Physics, 1966,36(11):3688-3689.

[6] BOROWIEC A, HAUGEN H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Applied Physics Letters, 2003, 82(25):4462-4464.

[7] NATHALA C S, AJAMI A, IONIN A A, et al. Experimental study of fs-laser induced sub-100nm periodic surface structures on titanium[J]. Optics Express, 2015, 23(5):5915-5929.

[8] BALDACCHINI T, CAREY J E, ZHOU M, et al.Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2006, 22(11):4917-4919.

[9] MORADI S, KAMAL S, ENGLEZOS P, et al. Femtosecond laser irradiation of metallic surfaces: Effects of laser parameters on superhydrophobicity[J]. Nanotechnology, 2013, 24(41):415302.

[10] VOROBYEV A Y, GUO C. Colorizing metals with femtosecond laser pulses[J]. Applied Physics Letters, 2008, 92(4):041914.

[11] WANG W P, L B D, LIU C L. Laser induced ripples on the surface of optical devices[J]. Laser & Optoelectronics Progress, 2002,39(6):13-19 (in Chinese).

[12] LINDE D V D, SOKOLOWSKI-TINTEN K, BIALKOWSKI J. Laser-solid interaction in the femtosecond time regime[J]. Applied Surface Science, 1997, 109(10):1-10.

[13] RETHFELD B, SOKOLOWSKI-TINTEN K, LINDE D V D, et al. Timescales in the response of materials to femtosecond laser excitation[J]. Applied Physics, 2004, A79(4):767-769.

[14] DUFFT D, ROSENFELD A, DAS S K, et al. Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO[J]. Journal of Applied Physics, 2009, 105(3): 034908.

[15] GUO X D, LI R X, HANG Y, et al. Femtosecond laser-induced periodic surface structure on ZnO[J]. Materials Letters, 2008, 62(12/13): 1769-1771.

[16] GUAN Y C, ZHOU W, LI Z L, et al. Femtosecond laser-induced iridescent effect on AZ31B magnesium alloy surface[J]. Journal of Physics, 2013, D46(42): 425305.

[17] SAKABE S, HASHIDA M, TOKITA S, et al. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse[J]. Physical Review, 2009, B79(3):033409.

[18] MORGNER U, KARTNER F X, CHO S H, et al. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti-sapphire laser[J].Optics Letters, 1999,24(6):411-413.

[19] MANNION P T,MAGEE J, COYNE E, et al. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air[J].Applied Surface Science, 2004,233(1/4):275-287.

[20] YUAN D Q, ZHOU M, CAI L A, et al. Femtosecond laser microprocessing Au film[J]. Spectroscopy and Spectral Analysis, 2009,29(5):1209-1212(in Chinese).

董胜男, 刘双宇, 刘凤德. 脉冲能量对不锈钢表面微观形貌影响规律研究[J]. 激光技术, 2018, 42(3): 331. DONG Shengnan, LIU Shuangyu, LIU Fengde. Study on influence of pulsed laser energy on microstructure of stainless steel[J]. Laser Technology, 2018, 42(3): 331.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!