中国激光, 2013, 40 (2): 0201002, 网络出版: 2013-01-14   

激光与石墨烯相互作用的研究现状及发展趋势 下载: 1129次

Research Status and Development Trends of Interaction between Laser and Graphene
作者单位
1 清华大学机械工程系先进成型制造教育部重点实验室, 北京 100084
2 曼彻斯特大学机械航空航天与土木工程学院激光加工研究中心, 英国, 曼彻斯特 M13,9PL
摘要
石墨烯的问世引起了全世界范围的研究热潮,激光技术是使石墨烯深入走向应用领域的有力的技术手段,已成为先进制造技术的焦点之一。介绍了不同种类的激光制备石墨烯工艺过程的反应机制,包括脉冲激光沉积、激光诱导化学气相沉积外延生长、双光束干涉以及激光打开碳纳米管等。阐述了激光对石墨烯薄膜的破坏、切割、减薄、发光等调控石墨烯的质量和光电性能的方法与原理,并讨论了激光图案化石墨烯在气体传感器,超级电容器等领域的应用。总结了激光技术在石墨烯的制备与应用领域的发展趋势。
Abstract
Recently global researches on graphene materials are exploding due to their outstanding properties. Laser technology is one of the most powerful manufacturing approaches, which makes graphene become a promising candidate for next generation electronic materials. In this work, the reaction mechanism of laser technology on preparation of graphene is summarized, including pulsed laser deposition (PLD), laser-induced chemical vapor deposition (LCVD), two-beam-laser interference mediated reduction, laser-induced unzipping of carbon nanotubes, and et al.. In addition, to control the quality and photoelectric properties of grapheme, the effect of laser on graphene is discussed, such as thinning, cleaning, cutting, simulated emission, and et al.. Moreover, the applications of micropatterned graphene-based materials on gas sensors, super capacitors are reviewed. At last, the potential use of laser on graphene material in the field of preparation and application is studied.
参考文献

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666~669

[2] C. G. Lee, X. D. Wei, J. W. Kysar et al.. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385~388

[3] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson et al.. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys. Rev. Lett., 2008, 100(1): 016602

[4] A. A. Balandin, S. Ghosh, W. Z. Bao et al.. Superior thermal conductivity of single-layer graphene[J]. Nano Lett., 2008, 8(3): 902~907

[5] R. R. Nair, P. Blake, A. N. Grigorenko et al.. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308~1308

[6] T. H. Maiman. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493~494

[7] D. V. Fedoseev, V. L. Bukhovets, I. G. Varshavskaya et al.. Transition of graphite into diamond in a solid phase under the atmospheric pressure[J]. Carbon, 1983, 21(3): 237~241

[8] Z. Chen. Laser direct writing carbon nanotube arrays on transparent substrates[J]. Appl. Phys. Lett., 2007, 90(13): 133108

[9] N. Sano, H. Wang, M. Chhowalla et al.. Nanotechnology: synthesis of carbon 'onions' in water[J]. Nature, 2001, 414(6863): 506~507

[10] Y. P. Sun, B. Zhou, Y. Lin et al.. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J. Am. Chem. Soc., 2006, 128(24): 7756~7757

[11] E. Cappelli, C. Scilletta, M. Servidori et al.. Morphology, structure and density evolution of carbon nano-structures deposited by N-IR pulsed laser ablation of graphite[J]. Diamond and Related Materials, 2008, 17(7-10): 1476~1481

[12] X. D. Bai, D. Li, D. Du et al.. Laser irradiation for purification of aligned carbon nanotube films[J]. Carbon, 2004, 42(10): 2125~2127

[13] J. S. Kim, K. S. Ahn, C. O. Kim et al.. Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature[J]. Appl. Phys. Lett., 2003, 82(10): 1607~1609

[14] T. Gong, Y. Zhang, W. J. Liu et al.. Connection of macro-sized double-walled carbon nanotube strands by bandaging with double-walled carbon nanotube films[J]. Carbon, 2007, 45(11): 2235~2240

[15] D. Zbaida, R. Popovitz-Biro, A. Lachish-Zalait et al.. Laser-induced direct lithography for patterning of carbon with sp3 and sp2 hybridization[J]. Adv. Funct. Mater., 2003, 13(5): 412~417

[16] Y. Miyamoto, H. Zhang, D. Tománek. Photoexfoliation of graphene from graphite: an Ab initio study[J]. Phys. Rev. Lett., 2010, 104(20): 208302

[17] B. Krauss, T. Lohmann, D. H. Chae et al.. Laser-induced disassembly of a graphene single crystal into a nanocrystalline network[J]. Phys. Rev. B, 2009, 79(16): 165428

[18] F. Claeyssens, M. N. R. Ashfold, E. Sofoulakis et al.. Plume emissions accompanying 248 nm laser ablation of graphite in vacuum: effects of pulse duration[J]. J. Appl. Phys., 2002, 91(9): 6162~6172

[19] M. Qian, Y. S. Zhou, Y. Gao et al.. Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite[J]. Appl. Phys. Lett., 2011, 98(17): 173108

[20] D. A. Sokolov, K. R. Shepperd, T. M. Orlando. Formation of graphene features from direct laser-induced reduction of graphite oxide[J]. J. Phys. Chem. Lett., 2010, 1(18): 2633~2636

[21] A. T. T. Koh, Y. M. Foong, D. H. C. Chua. Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature[J]. Appl. Phys. Lett., 2010, 97(11): 114102

[22] C. Berger, Z. M. Song, T. B. Li et al.. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J. Phys. Chem. B, 2004, 108(52): 19912~19916

[23] S. Lee, M. F. Toney, W. Ko et al.. Laser-synthesized epitaxial graphene[J]. ACS Nano, 2010, 4(12): 7524~7530

[24] J. B. Park, W. Xiong, Y. Gao et al.. Fast growth of graphene patterns by laser direct writing[J]. Appl. Phys. Lett., 2011, 98(12): 123109

[25] K. S. Kim, Y. Zhao, H. Jang et al.. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706~710

[26] J. B. Park, W. Xiong, Z. Q. Xie et al.. Transparent interconnections formed by rapid single-step fabrication of graphene patterns[J]. Appl. Phys. Lett., 2011, 99(5): 053103

[27] L. J. Cote, R. Cruz-Silva, J. X. Huang. Flash reduction and patterning of graphite oxide and its polymer composite[J]. J. Am. Chem. Soc., 2009, 131(31): 11027~11032

[28] L. Huang, Y. Liu, L. C. Ji et al.. Pulsed laser assisted reduction of graphene oxide[J]. Carbon, 2011, 49(7): 2431~2436

[29] D. Li, M. B. Muller, S. Gilje et al.. Processable aqueous dispersions of graphene nanosheets[J]. Nat. Nano, 2008, 3(2): 101~105

[30] V. Abdelsayed, S. Moussa, H. M. Hassan et al.. Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature[J]. J. Phys. Chem. Lett., 2010, 1(19): 2804~2809

[31] Z. B. Liu, Y. Wang, X. L. Zhang et al.. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes[J]. Appl. Phys. Lett., 2009, 94(2): 021902

[32] Li Guo, H. B. Jiang, R. Q. Shao et al.. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device[J]. Carbon, 2012, 50(4): 1667~1673

[33] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii et al.. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240): 872~876

[34] L. Y. Jiao, L. Zhang, X. R. Wang et al.. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 458(7240): 877~880

[35] P. Kumar, L. S. Panchakarla, C. N. Rao. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons[J]. Nanoscale, 2011, 3(5): 2127~2129

[36] J. Huang, L. Qi, J. Li. In situ imaging of layer-by-layer sublimation of suspended graphene[J]. Nano Research, 2010, 3(1): 43~50

[37] S. Dhar, A. Roy Barman, G. X. Ni et al.. A new route to graphene layers by selective laser ablation[J]. AIP Advances, 2011, 1(2): 022109

[38] S. Ghosh, W. Z. Bao, D. L. Nika et al.. Dimensional crossover of thermal transport in few-layer graphene[J]. Nat. Mater., 2010, 9(7): 555~558

[39] G. H. Han, S. J. Chae, E. S. Kim et al.. Laser thinning for monolayer graphene formation: heat sink and interference effect[J]. ACS Nano, 2010, 5(1): 263~268

[40] W. Y. Jang, Z. Chen, W. Z. Bao et al.. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite[J]. Nano Lett., 2010, 10(10): 3909~3913

[41] M. Currie, J. D. Caldwell, F. J. Bezares et al.. Quantifying pulsed laser induced damage to graphene[J]. Appl. Phys. Lett., 2011, 99(21): 211909

[42] Y. Zhou, Q. L. Bao, B. N. Varghese et al.. Microstructuring of graphene oxide nanosheets using direct laser writing[J]. Adv. Mater., 2010, 22(1): 67~71

[43] G. Xing, H. Guo, X. Zhang et al.. The physics of ultrafast saturable absorption in graphene[J]. Opt. Express, 2010, 18(5): 4564~4573

[44] M. Lenner, A. Kaplan, C. Huchon et al.. Ultrafast laser ablation of graphite[J]. Phys. Rev. B, 2009, 79(18): 184105

[45] H. O. Jeschke, M. E. Garcia, K. H. Bennemann. Theory for the ultrafast ablation of graphite films[J]. Phys. Rev. Lett., 2001, 87(1): 015003

[46] A. Roberts, D. Cormode, C. Reynolds et al.. Response of graphene to femtosecond high-intensity laser irradiation[J]. Appl. Phys. Lett., 2011, 99(5): 051912

[47] W. Zhang, L. Li, Z. Wang et al.. Tisapphire femtosecond laser direct micro-cutting and profiling of graphene[J]. Appl. Phys. A: Materials Science & Processing, 2012, 109(2): 291~297

[48] G. Kalita, L. T. Qi, Y. Namba et al.. Femtosecond laser induced micropatterning of graphene film[J]. Mater. Lett., 2011, 65(11): 1569~1572

[49] T. Li, L. Luo, M. Hupalo et al.. Femtosecond population inversion and stimulated emission of dense dirac fermions in graphene[J]. Phys. Rev. Lett., 2012, 108(16): 167401

[50] C. Berger, Z. M. Song, X. B. Li et al.. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777): 1191~1196

[51] S. P. Pang, H. Nok Tsao, X. L. Feng et al.. Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors[J]. Adv. Mater., 2009, 21(34): 3488~3491

[52] D. C. Wei, Y. Q. Liu, H. L. Zhang et al.. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches[J]. J. Am. Chem. Soc., 2009, 131(31): 11147~11154

[53] C. A. Di, D. C. Wei, G. Yu et al.. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors[J]. Adv. Mater., 2008, 20(17): 3289~3293

[54] Y. L. Zhang, L. Guo, S. Wei et al.. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 2010, 5(1): 15~20

[55] Y. Wang, X. F. Xu, J. Lu et al.. Toward high throughput interconvertible graphane-to-graphene growth and patterning[J]. ACS Nano, 2010, 4(10): 6146~6152

[56] V. Strong, S. Dubin, M. F. El-Kady et al.. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices[J]. ACS Nano, 2012, 6(2): 1395~403

[57] M. F. El-Kady, V. Strong, S. Dubin et al.. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326~1330

姜娟, 黄婷, 钟敏霖, 叶晓慧, 林哲, 龙江游, 李琳. 激光与石墨烯相互作用的研究现状及发展趋势[J]. 中国激光, 2013, 40(2): 0201002. Jiang Juan, Huang Ting, Zhong Minling, Ye Xiaohui, Lin Zhe, Long Jiangyou, Li Lin. Research Status and Development Trends of Interaction between Laser and Graphene[J]. Chinese Journal of Lasers, 2013, 40(2): 0201002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!