激光与光电子学进展, 2018, 55 (9): 091401, 网络出版: 2018-09-08   

基于分区扫描的选区激光熔化钛合金的成形质量 下载: 802次

Forming Quality of Titanium Alloys by Selective Laser Melting Based on Partition Scanning
作者单位
1 昆明理工大学材料科学与工程学院, 云南 昆明 650093
2 江苏永年激光成形技术有限公司, 江苏 昆山 215300
摘要
为提高选区激光熔化(SLM)医用Ti6Al4V钛合金的成形质量, 优化了激光分区扫描工艺参数。通过正交实验和单因素实验, 对比分析了分区扫描策略和传统整体扫描策略下成形零件的显微组织结构特征、致密度、尺寸精度和表面质量, 总结了SLM成形医用Ti6Al4V钛合金的典型表面形貌。研究结果表明, 分区扫描策略不仅能获得尺寸精度高和表面质量良好的钛合金成形件, 而且能显著改善悬垂面的成形效果。
Abstract
In order to improve the forming quality of medical Ti6Al4V titanium alloys by selective laser melting (SLM), the process parameters of laser partition scanning are optimized. By the orthogonal experiment and single factor experiment, the microstructure characteristic, efficiency of space filling, dimensional accuracy and surface quality of formed parts under the partition scanning strategy and the traditional overall scanning strategy are compared and analyzed. The typical surface morphologies of medical Ti6Al4V titanium alloys formed by SLM are summarized. The research results show that the partition scanning strategy can not only increase the dimensional accuracy and surface quality of titanium alloys, but also significantly improve the forming effect of overhanging surfaces.
参考文献

[1] Murr L E, Martinez E, Amato K N, et al. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science[J]. Journal of Materials Research and Technology, 2012, 1(1): 42-54.

[2] Frazier W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928.

[3] Stamp R, Fox P, O′Neill W, et al. The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting[J]. Journal of Materials Science: Materials in Medicine, 2009, 20(9): 1839-1848.

[4] Santos E C, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12/13): 1459-1468.

[5] 王霄, 王东生, 高雪松, 等. 轻合金构件激光增材制造研究现状及其发展[J]. 应用激光, 2016(4): 478-483.

    Wang X, Wang D S, Gao X S, et al. Research status and development in laser additive manufacturing of light alloy components[J]. Applied Laser, 2016(4): 478-483.

[6] 尹华, 白培康, 刘斌, 等. 金属粉末选区激光熔化技术的研究现状及其发展趋势[J]. 金属铸锻焊技术, 2010, 39(1): 140-144.

    Yi H, Bai P K, Liu B, et al. Present situation and development trend of selective laser melting technology for metal powder[J]. Casting Forging Welding, 2010, 39(1): 140-144.

[7] Gu D, Hagedorn Y, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860.

[8] Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253(19): 8064-8069.

[9] Li H X, Huang B Y, Sun F, et al. Microstructure and tensile properties of Ti-6Al-4V alloys fabricated by selective laser melting[J]. Rare Metal Materials and Engineering, 2013, 42(2): 209-212.

[10] Li R D, Liu J H, Shi Y S, et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(9/10/11/12): 1025-1035.

[11] Heinl P, Müller L, Korner C, et al. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting[J]. Acta Biomaterialia, 2008, 4(5): 1536-1544.

[12] Wu S Q, Lu Y J, Gan Y L, et al. Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments[J]. Journal of Alloys and Compounds, 2016, 672: 643-652.

[13] Brunello G, Sivolella S, Meneghello R, et al. Powder-based 3D printing for bone tissue engineering[J]. Biotechnology Advances, 2016, 34 (5): 740-753.

[14] Gu D D, Shen Y F. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder[J]. Journal of Alloys and Compounds, 2007, 432(1/2): 163-166.

[15] Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of pre-alloyed powders[J]. Rapid Prototyping Journal, 2010, 16(6): 450-459.

[16] 杨永强, 王迪, 吴伟辉. 金属零件选区激光熔化直接成形技术研究进展[J]. 中国激光, 2011, 38(6): 0601007.

    Yang Y Q, Wang D, Wu W H, et al. Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(6): 0601007.

[17] 孙婷婷, 杨永强, 苏旭彬, 等. 316L不锈钢粉末选区激光熔化成形致密化研究[J]. 激光技术, 2010, 34(4): 443-446.

    Sun T T, Yang Y Q, Su X B, et al. Research of densification of 316L stainless steel powder in selective laser melting process[J]. Laser Technology, 2010, 34(4): 443-446.

[18] 王迪, 杨永强, 黄延禄, 等. 层间扫描策略对SLM直接成形金属零件质量的影响[J]. 激光技术, 2010, 34(4): 447-451.

    Wang D, Yang Y Q, Huang Y L, et al. Impact of inter-layer scan strategy on quality of direct fabrication metal part in SLM process[J]. Laser Technology, 2010, 34(4): 447-451.

[19] 王迪, 杨永强, 吴伟辉. 光纤激光选区熔化316L不锈钢工艺优化[J]. 中国激光, 2009, 36(12): 3233-3239.

    Wang D, Yang Y Q, Wu W H. Process optimization for 316L stainless steel by fiber laser selective melting[J]. Chinese Journal of Lasers, 2009, 36(12): 3233-3239.

[20] 刘睿诚, 杨永强, 王迪. 选区激光熔化成形金属零件上表面粗糙度的研究[J]. 激光技术, 2013, 37(4): 425-430.

    Liu R C, Yang Y Q, Wang D. Research of upper surface roughness of metal parts fabricated by selective laser melting[J]. Laser Technology, 2013, 37(4): 425-430.

[21] 王迪, 杨永强, 黄延禄, 等. 选区激光熔化直接成形金属零件致密度的改善[J]. 华南理工大学学报(自然科学版), 2010, 38(6): 107-111.

    Wang D, Yang Y Q, Huang Y L, et al. Density improvement of metal parts directly fabricated via selective laser melting[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(6): 107-111.

[22] 杨雄文, 杨永强, 刘洋, 等. 激光选区熔化成形典型几何特征尺寸精度研究[J]. 中国激光, 2015, 42(3): 0303004.

    Yang X W, Yang Y Q, Liu Y, et al. Study on dimensional accuracy of typical geometric features manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(3): 0303004.

[23] Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features[J]. Materials Science and Engineering, 2006, 428(1): 148-158.

[24] 孙健峰, 杨永强, 扬州. 基于粉末特性的选区激光熔化Ti-6Al-4V表面粗糙度研究[J]. 中国激光, 2016, 43(7): 0702004.

    Sun J F, Yang Y Q, Yang Z. Study on surface roughness of selective laser melting Ti-6Al-4V based on powder characteristics[J]. Chinese Journal of Lasers, 2016, 43(7): 0702004.

[25] 陈德宁, 刘婷婷, 廖文和, 等. 扫描策略对金属粉末选区激光熔化温度场的影响[J]. 中国激光, 2016, 43(4): 0403003.

    Chen D N, Liu T T, Liao W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 2016, 43(4): 0403003.

[26] 闫岸如, 杨恬恬, 王智勇, 等. 选区激光熔化不同层厚镍的热特性与机械性能[J]. 中国激光, 2016, 43(2): 0203004.

    Yan A R, Yang T T, Wang Z Y, et al. Thermal properties and mechanical properties of selective laser melting different layer thicknesses of Ni powder[J]. Chinese Journal of Lasers, 2016, 43(2): 0203004.

[27] 麦淑珍, 杨永强, 王迪. 激光选区熔化成型NiCr合金曲面表面形貌及粗糙度变化规律研究[J]. 中国激光, 2015, 42(12): 1203004.

    Mai S Z, Yang Y Q, Wang D. Study on surface morphology and roughness variation of NiCr alloy curved surface manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(12): 1203004.

[28] Yadroitsev I, Smurov I. Surface morphology in selective laser melting of metal powders[J]. Physics Procedia, 2011, 12(1): 264-270.

[29] Evren Y, Jan D, Kruth J. The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts[J]. Rapid Prototyping Journal, 2011, 17(5): 312-327.

[30] Nersisyan H H, Yoo B U, Kim Y M, et al. Gas-phase supported rapid manufacturing of Ti-6Al-4V alloy spherical particles for 3D printing[J]. Chemical Engineering Journal, 2016, 304: 232-240.

万乐, 王思琦, 张晓伟, 蒋业华. 基于分区扫描的选区激光熔化钛合金的成形质量[J]. 激光与光电子学进展, 2018, 55(9): 091401. Wan Le, Wang Siqi, Zhang Xiaowei, Jiang Yehua. Forming Quality of Titanium Alloys by Selective Laser Melting Based on Partition Scanning[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091401.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!