激光与光电子学进展, 2018, 55 (10): 100002, 网络出版: 2018-10-14   

大型光学望远镜主镜主动支撑系统研究进展 下载: 630次

Recent Progress of Active Support System for Large Optical Telescope Primary Mirror
徐宏 1杨利伟 1,2,*杨会生 1,2
作者单位
1 中国科学院长春光学精密机械与物理研究所空间光学研究二部, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
主动支撑系统能使大型光学望远镜的主镜具备面形控制及定位的能力, 单体镜面形主动控制技术及拼接镜共相位成像技术因而得到了迅速发展。回顾了近年来主动支撑系统及促动器在大型光学望远镜中的应用, 并对其进行了总结, 归纳出了几种常见的主动支撑系统及促动器, 比较了它们的特点, 陈述了主动支撑系统与促动器之间的内在联系。最后对未来应用于望远镜主镜的主动支撑系统及促动器进行了展望。
Abstract
The active support system can provide the capacity of surface figure control and positioning for large optical telescope primary mirror, hence the active control technology of monolithic mirror surface figure and co-phasing technique of segmented mirror has been developed rapidly. The applications of active support system and actuator in large optical telescope in recent years are reviewed and summarized. Several common active support systems and actuators are concludes. Their features are compared, and the relationship between active support system and actuator is proposed. The future development of active support system and actuator applied to telescope primary mirror is prospected in the end.
参考文献

[1] 邵亮, 杨德华, 陈昆新, 等. 光学天文望远镜用微位移驱动器机构研究综述[J]. 天文学进展, 2009, 27(1): 70-79.

    Shao L, Yang D H, Chen K X, et al. Review of mechanical structure of micro-displacement actuator for optical astronomical telescope[J]. Progress in Astronomy, 2009, 27(1): 70-79.

[2] 白清顺, 王群, 张庆春, 等. 高精度微位移促动器及其在极地天文望远镜中的应用[J]. 中国科学: 技术科学, 2016, 46(7): 697-705.

    Bai Q S, Wang Q, Zhang Q C, et al. High-precision micro-displacement actuator and its application in polar astronomical telescope[J]. Scientia Sinica (Technologica), 2016, 46(7): 697-705.

[3] 胡佳宁, 董吉洪, 周平伟. 地基大口径望远镜主镜主动支撑系统综述[J]. 激光与红外, 2017, 47(1): 5-12.

    Hu J N, Dong J H, Zhou P W. Review on active support system of large ground-based telescope primary mirror[J]. Laser & Infrared, 2017, 47(1): 5-12.

[4] Anderson E H, Cash M F, Janzen P C, et al. Precision, range, bandwidth and other tradeoffs in hexapods with application to large ground based telescopes[J]. Proceedings of SPIE, 2006, 6273: 62731F.

[5] 朱熠, 陈涛, 王建立, 等. 1.23 m SiC主镜的本征模式主动光学校正[J]. 光学 精密工程, 2017, 25(10): 2551-2563.

    Zhu Y, Chen T, Wang J L, et al. Active correction of 1.23 m SiC mirror using bending mode[J]. Optics and Precision Engineering, 2017, 25(10): 2551-2563.

[6] 吴小霞, 李剑锋, 宋淑梅, 等. 4 m SiC轻量化主镜的主动支撑系统[J]. 光学 精密工程, 2014, 22(9): 2451-2457.

    Wu X X, Li J F, Song S M, et al. Active support system for 4 m SiC lightweight primary mirror[J]. Optics and Precision Engineering, 2014, 22(9): 2451-2457.

[7] 李宏壮, 张振铎, 王建立, 等. 基于浮动支撑的620 mm薄反射镜面形主动校正[J]. 光学学报, 2013, 33(5): 0511001.

    Li H Z, Zhang Z D, Wang J L, et al. Active surface-profile correction of 620 mm thin-mirror based on flotation support[J]. Acta Optica Sinica, 2013, 33(5): 0511001.

[8] 陈新东. 9点促动变形镜性能测试及在空间相机中的应用研究[J]. 光学学报, 2013, 33(10): 1023001.

    Chen X D. Testing of a 9-points deformable mirror and its application in space camera system[J]. Acta Optica Sinica, 2013, 33(10): 1023001.

[9] McBride D, Hudek J S, Panteleev S. Repairing stress induced cracks in the Keck primary mirror segments[J]. Proceedings of SPIE, 2012, 8444: 844421.

[10] Meng J D, Franck J, Gabor G, et al. Position actuators for the primary mirror of the W. M. Keck telescope[J]. Proceedings of SPIE, 1990, 1236: 1018-1022.

[11] Stepp L M, Huang E, Cho M K. Gemini primary mirror support system[J]. Proceedings of SPIE, 1994, 2199: 223-238.

[12] Huang E. Gemini primary mirror cell design[J]. Proceedings of SPIE, 1997, 2871: 291-300.

[13] Stepp L. Conceptual design of the primary mirror cell assembly[EB/OL]. (1993-11) [2018-04-10]. http:∥www.gemini.edu/documentation/webdocs/rpt/rpt-o-g0025.pdf.

[14] Krabbendam V L, Ruthven G P, Bennett V P, et al. Active optical system design for 4.2 m SOAR telescope[J]. Proceedings of SPIE, 2000, 4003: 122-135.

[15] Neufeld C, Bennett V, Sarnik A, et al. Development of an active optical system for the SOAR telescope[J]. Proceedings of SPIE, 2004, 5489: 1052-1060.

[16] Neufeld C, Zolcinski-Couet M C, Keane M, et al. The active primary mirror assembly for the SOAR telescope[J]. Proceedings of SPIE, 2004, 5489: 870-880.

[17] Yoder P R, Jr. Opto-mechanical system design[M]. 3rd ed. Bellingham: CRC Press, 2006: 455.

[18] Ashby D S, Kern J, Hill J M, et al. The large binocular telescope primary mirror support control system description and current performance results[J]. Proceedings of SPIE, 2008, 7018: 70184C.

[19] Hadaway J B, Chaney D M, Carey L B. The optical metrology system for cryogenic testing of the JWST primary mirror segments[J]. Proceedings of SPIE, 2011, 8126: 81260P.

[20] Warden R M. Cryogenic Nano-Actuator for JWST[C]∥Proceedings of the 3dh Aerospace Mechanisms Symposium, Hampton: Langley Research Center 2006: 239-252.

[21] Krabbendam V L, Sweeney D. The large synoptic survey telescope preliminary design overview[J]. Proceedings of SPIE, 2010, 7733: 77330D.

[22] Neill D, Hileman E. LSST telescope primary/tertiary mirror cell assembly[J]. Proceedings of SPIE, 2010, 7733:77332Q.

[23] DeVries J, Neill D, Hileman E. LSST telescope primary / tertiary mirror hardpoints[J]. Proceedings of SPIE, 2010, 7739: 77391J.

[24] Westerhoff T, Hartemann P, Jedamzik R, et al. Performance of industrial scale production of ZERODUR mirrors with diameter of 1.5 m proves readiness for the ELT M1 segments[J]. Proceedings of SPIE, 2012, 8444: 844437.

[25] Tamai R, Cirasuolo M, González J C, et al. The E-ELT program status[J]. Proceedings of SPIE, 2016, 9906: 99060W.

[26] Nijenhuis J, Heijmans J, Breeje R D, et al. Designing the primary mirror support for the E-ELT[J]. Proceedings of SPIE, 2016, 9906: 990616.

[27] Jiménez A, Morante E, Viera T, et al. Design of a prototype position actuator for the primary mirror segments of the European extremely large telescope[J]. Proceedings of SPIE, 2010, 7733: 773354.

[28] Gunnels S, Davison W, Cuerden B, et al. The giant Magellan telescope (GMT) structure[J]. Proceedings of SPIE, 2004, 5495: 168-179.

[29] Shectman S, Johns M. GMT overview[J]. Proceedings of SPIE, 2010, 7733: 77331Y.

[30] Hull C, Gunnels S, Johns M, et al. Giant Magellan telescope primary mirror cells[J]. Proceedings of SPIE, 2010, 7733: 773327.

[31] Hull Charlie. GMT primary mirror support[J]. Proceedings of SPIE, 2014, 9145: 91451H.

[32] Haruna M, Kim I, Fukushima K, et al. Force control technology of segment mirror exchange robot for thirty meter telescope (TMT)[J]. Proceedings of SPIE, 2016, 9906: 99062Z.

[33] Nelson J, Sanders G H. TMT status report[J]. Proceedings of SPIE, 2006, 6267: 626728.

[34] Ponslet E, Blanco D, Cho M, et al. Development of the primary mirror segment support assemblies for the thirty meter telescope[J]. Proceedings of SPIE, 2006, 6273: 627319.

[35] Thompson P M, MacMynowski D G, Sirota M J. Control analysis of the TMT primary segment assembly[J]. Proceedings of SPIE, 2008, 7012: 70121N.

[36] Lorell K R, Aubrun J N, Clappier R R, et al. Design of a prototype primary mirror segment positioning actuator for the thirty meter telescope[J]. Proceedings of SPIE, 2006, 6267: 62672T.

[37] Iye M, Kodaira K. Primary mirror support system for the SUBARU telescope[J]. Proceedings of SPIE, 1994, 2199: 762-772.

[38] Knohl E D. VLT primary support system[J]. Proceedings of SPIE, 1994, 2199: 271-283.

[39] Martin H M, Callahan S P, Cuerden B, et al. Active supports and force optimization for the MMT primary mirror[J]. Proceedings of SPIE, 1998, 3352: 412-423.

[40] Blanco D R, Pentland G, Winrow E G, et al. SALT mirror mount: a high performance, low cost mount for segmented mirrors[J]. Proceedings of SPIE, 2003, 4840: 527-532.

[41] Cui X Q. Preparing first light of LAMOST[J]. Proceedings of SPIE, 2008, 7012: 701204.

[42] Gray P M, Hill J M, Davison W B, et al. Support of large borosilicate honeycomb mirrors[J]. Proceedings of SPIE, 1994, 2199: 691-702.

[43] Barto A, Acton D S, Finley P, et al. Actuator usage and fault tolerance of the James Webb space telescope optical element mirror actuators[J]. Proceedings of SPIE, 2012, 8442: 84422I.

[44] Cui X Q, Su D, Li G P, et al. Experiment system of LAMOST active optics[J]. Proceedings of SPIE, 2004, 5489: 974-985.

[45] 苏定强, 王亚楠. 大天区面积多目标光纤光谱望远镜(LAMOST)的跟踪运动[J]. 天体物理学报, 1997, 17(3): 315-322.

    Su D Q, Wang Y N. The tracking motion of the large sky area multi-object fibre spectroscopic telescope (LAMOST)[J]. Acta Astrophysica Sinica, 1997, 17(3): 315-322.

[46] 唐金龙, 张俊, 王少白, 等. 望远镜主镜气压力驱动器设计[J]. 光学学报, 2012, 32(6): 0623005.

    Tang J L, Zhang J, Wang S B, et al. Pneumatic force actuator for telescope primary mirror support[J]. Acta Optica Sinica, 2012, 32(6): 0623005.

[47] Marth H, Lula B. Development of a compact, high load PZT-ceramic long-travel linear actuator with picometer resolution for active optical alignment applications[J]. Proceedings of SPIE, 2006, 6273: 62731K.

[48] Saleem A, Ghodsi M, Mesbah M, et al. Model identification of terfenol-D magnetostrictive actuator for precise positioning control[J]. Proceedings of SPIE, 2016, 9799: 97992J.

徐宏, 杨利伟, 杨会生. 大型光学望远镜主镜主动支撑系统研究进展[J]. 激光与光电子学进展, 2018, 55(10): 100002. Xu Hong, Yang Liwei, Yang Huisheng. Recent Progress of Active Support System for Large Optical Telescope Primary Mirror[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!