红外与毫米波学报, 2017, 36 (4): 453, 网络出版: 2017-10-12   

多种天气条件下的天空光偏振模型

AA skylight polarization model of various weather conditions
作者单位
北京航空航天大学 仪器科学与光电工程学院, 北京 100191
摘要
天空光偏振模型能够仿真天空光偏振态的分布规律,是研究天空光偏振态分布与大气特性参数之间的定量关系的重要工具.首先, 基于倍加累加法的辐射传输模型和T矩阵法计算粒子散射特性, 建立了适用于多种天气条件下的天空光偏振模型, 可覆盖可见光波段到近红外波段; 其次, 在比较实验中, 所建立模型的仿真结果与Hovenier等人的计算结果有95%的全天空光仿真点的相对误差小于5%; 最后, 利用基于液晶相位可变延迟器(liquid crystal variable retarders, LCVR)的全偏振成像探测系统进行全天空光探测实验, 结果表明, 所建模型的仿真精度优于传统模型, 并且在80%的区域内与实际观测结果保持一致.由此可以得出结论, 所建立的天空光偏振模型能够比较准确模拟多种天气下的全天空范围内天空光偏振态分布规律, 为不同天气条件下偏振遥感探测和偏振导航等技术提供有力的理论依据.
Abstract
The skylight polarization models can simulate the polarization state distribution of the skylight, and are key tools to study the quantitative relationship between the polarization state distribution of the skylight and the characteristic parameters of the atmosphere. A skylight polarization model of various weather conditions was modelled, which is based on adding and doubling method for solving the radiative transfer equation and T matrix method for calculating the scattering properties of particles. The comparison between the simulation results of this model and the calculation results of Hovenier et.al showed that the relative error of more than 95% points is less than 5%. The measurement experiment results with the polarization imaging system based on LCVR showed that measurements are most consistent with the simulation results in degree of polarization in 80% of the area. It can be concluded that the model can accurately simulate the distribution of the polarization state of the sky light under various weather conditions.
参考文献

[1] Pust N J, Shaw J A. Digital all-sky polarization imaging of partly cloudy skies.[J]. Applied Optics, 2008, 47(34):190-8.

[2] Hegedüs R, kesson S, Horváth G. Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies[J]. Journal of the Optical Society of America A, 2007, 24(8):2347-56.

[3] Barta A, Horváth G, kos Horváth, et al. Testing a polarimetric cloud imager aboard research vessel Polarstern: comparison of color-based and polarimetric cloud detection algorithms[J]. Applied Optics, 2015, 54(5):1065-77.

[4] Emde C, Buras R, Mayer B, et al. The impact of aerosols on polarized sky radiance: model development, validation, and applications[J]. Atmospheric Chemistry & Physics, 2009, 10(2):383-396.

[5] Lin Z, Stamnes S, Jin Z, et al. Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: Upgrades of the DISORT computational tool[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 157(4):119-134.

[6] Spurr R J D. VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2006, 102(2):316-342.

[7] LENG Shao-Hua,LIU Lin-Hua. Effects of polarization on numerical accuracy of radiative transfer[J]. Journal of Thermal Science & Technology (冷少华, 刘林华. 偏振对辐射传递计算精度的影响. 热科学与技术), 2008, 7(3):211-216.

[8] Kotchenova S Y, Vermote E F, Levy R, et al. Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study.[J]. Applied Optics, 2008, 47(13):2215-26.

[9] WANG Wei, CHU Jin-Kui, CUI Yan, et al. Modeling of atmospheric polarization pattern based on vector radiative transfer[J]. Chinese Journal of Lasers (王威, 褚金奎, 崔岩,等. 基于矢量辐射传输的大气偏振建模. 中国激光), 2013, 40(5):215-221.

[10] SONG Zheng-Fang, HAN Shou-Chun. Atmospheric attenuation of near infrared radiation propagating through fog[J]. Chinese Journal of Infrared Research (宋正方, 韩守春. 近红外辐射在雾中衰减的研究. 红外与毫米波学报), 1987, 4:77-81.

[11] Hess M, Koepke P, Schult I. Optical Properties of Aerosols and Clouds: The Software Package OPAC.[J]. Bulletin of the American Meteorological Society, 1998, 79(5):831-844.

[12] Mishchenko M I, Travis L D. Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 60(3): 309-324.

[13] Mishchenko M I, Dlugach J M, Chowdhary J, et al. Polarized bidirectional reflectance of optically thick sparse particulate layers: An efficient numerically exact radiative-transfer solution[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 156: 97-108.

[14] Kuik F, Haan J F D, Hovenier J W. Benchmark results for single scattering by spheroids[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 1992, 47(6):477-489.

[15] BI Xue-Yan. Application , calculation and calibration of microtops Ⅱ sunphotometer [J]. Meteorological Science And Technology (毕雪岩. Microtops Ⅱ 型太阳光度计的使用、计算及定标.气象科技), 2007,35(4):583-588.

[16] SHI Guang-Yu. Atmospheric radiation [M]. Science Press(石广玉. 大气辐射学. 科学出版社), 2007.

张颖, 张熠, 赵慧洁. 多种天气条件下的天空光偏振模型[J]. 红外与毫米波学报, 2017, 36(4): 453. ZHANG Ying, ZHANG Yi, ZHAO Hui-Jie. AA skylight polarization model of various weather conditions[J]. Journal of Infrared and Millimeter Waves, 2017, 36(4): 453.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!