发光学报, 2017, 38 (4): 507, 网络出版: 2017-05-03   

氧化锌作为电子传输层的量子点发光二极管

Quantum Dot Light Emitting Diodes with ZnO Electron Transport Layer
作者单位
1 北京交通大学 电子信息工程学院, 北京 100044
2 北京信息科技大学 自动化学院, 北京 100101
摘要
为降低量子点发光二极管(QLED)的开启电压, 提高器件性能, 利用电子传输性能良好的氧化锌(ZnO)作为电子传输层, 制备了结构为ITO/PEDOT∶PSS/poly-TPD/QDs/ZnO/Al的QLED样品。在该器件结构基础上, 采用隧穿注入和空间电荷限制电流模型仿真分析了载流子在量子点(QDs)层的电流密度。研究发现, 当ZnO厚度为50 nm时, poly-TPD的理论最优厚度为40 nm, 载流子在QDs层的注入达到相对平衡。通过测试器件的电流密度-电压-亮度-发光效率特性, 研究了空穴传输层厚度对QLED器件性能的影响。实验结果表明, 当空穴传输层厚度为40 nm时, 器件的开启电压为1.7 V, 最大发光效率为1.18 cd/A。在9 V电压下, 器件最大亮度达到5 225 cd/m2, 远优于其他厚度的器件。实验结果与仿真结果基本吻合。
Abstract
In order to reduce the turn on voltage and improve the performance of QLED, ZnO film with good electronic transmission property was used as electron transport layer. The structure of the sample was ITO/PEDOT∶PSS/Poly-TPD/QDs/ZnO. The models of Folwer-Nordheim tunneling injection and space-charge limited current were employed to analyze the injection current density in QDs layer. The results show that the optimal thickness of poly-TPD is confirmed to 40 nm when ZnO thickness is fixed of 50 nm, and the injection carriers in QDs layer can reach a certain balance. By measuring the current density-voltage-luminance-luminous efficiency of QLED, the influences of hole transport layer thickness on the device performance were studied. Experiment results show that the device with a hole transport layer of 40 nm has the best performances than the other devices, of which the turn on voltage is 1.7 V, the maximum lumious efficiency is 1.18 cd/A, and the maximum brightness can reach 5 225 cd/m2 under the voltage of 9 V.
参考文献

[1] COE S, WOO W K, BAWENDI M, et al.. Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature, 2002, 420(6917):800-803.

[2] SCHLAMP M C, PENG X G, ALIVISATOS A P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer [J]. J. Appl. Phys., 1997, 82(11):5837-5842.

[3] ANIKEEVA P O, HALPERT J E, BAWENDI M G, et al.. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum [J]. Nano Lett., 2009, 9(7):2532-2536.

[4] SUPRAN G J, SHIRASAKI Y, SONG K W, et al.. QLEDs for displays and solid-state lighting [J]. MRS Bull., 2013, 38(9):703-711.

[5] COLVIN V L, SCHLAMP M C, ALIVISATOS A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature, 1994, 370(6488):354-357.

[6] SUN Q J, WANG Y A, LI L S, et al.. Bright, multicoloured light-emitting diodes based on quantum dots [J]. Nat. Photon., 2007, 1(12):717-722.

[7] QIAN L, ZHENG Y, XUE J G, et al.. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures [J]. Nat. Photon., 2011, 5(9):543-548.

[8] DAI X L, ZHANG Z X, JIN Y Z, et al.. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525):96-99.

[9] VU H T, HUANG C Y, CHEN C J, et al.. Cesium azide—an efficient material for green light-emitting diodes with giant quantum dots [J]. IEEE Photonics Technol. Lett., 2015, 27(20):2123-2126.

[10] 艾哲, 倪帅帅, 张亚非. 基于CuInS2/ZnS核壳结构量子点的高光效暖白光LED [J]. 发光学报, 2015, 36(11):1282-1288.

    AI Z, NI S S, ZHANG Y F. Warm white LED with high luminous efficiency based on CuInS2/ZnS core/shell quantum dots [J]. Chin. J. Lumin., 2015, 36(11):1282-1288. (in Chinese)

[11] JI W Y, TIAN Y, ZENG Q H, et al.. Efficient quantum dot light-emitting diodes by controlling the carrier accumulation and exciton formation [J]. ACS Appl. Mater. Interf., 2014, 6(16):14001-14007.

[12] ZHANG X L, DAI H T, ZHAO J L, et al.. All-solution processed composite hole transport layer for quantum dot light emitting diode [J]. Thin Solid Films, 2016, 603:187-192.

[13] DING T, YANG X Y, KE L, et al.. Improved quantum dot light-emitting diodes with a cathode interfacial layer [J]. Org. Electron., 2016, 32:89-93.

[14] 彭辉仁, 陈树明, 王忆. 基于聚合物-量子点共混的量子点发光二极管 [J]. 发光学报, 2016, 37(3):299-304.

    PENG H R, CHEN S M, WANG Y. Quantum dot light-emitting diodes with mixed polymer-quantum dots light-emitting layer [J]. Chin. J. Lumin., 2016, 37(3):299-304. (in Chinese)

[15] SON D I, KIM H H, CHO S, et al.. Carrier transport of inverted quantum dot LED with PEIE polymer [J]. Org. Electron., 2014, 15(4):886-892.

[16] 马航, 李邓化, 陈雯柏, 等. 量子点发光二极管中载流子注入机理的研究 [J]. 光电子·激光, 2016, 27(7):681-686.

    MA H, LI D H, CHEN W B, et al.. Investigation on the carrier injection mechanism of the quantum dots light emitting diodes [J]. J. Optoelectron.·Laser, 2016, 27(7):681-686. (in Chinese)

[17] CARUGE J M, HALPERT J E, BULOVIC' V, et al.. NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices [J]. Nano Lett., 2006, 6(12):2991-2994.

马航, 李邓化, 陈雯柏, 叶继兴. 氧化锌作为电子传输层的量子点发光二极管[J]. 发光学报, 2017, 38(4): 507. MA Hang, LI Deng-hua, CHEN Wen-bai, YE Ji-xing. Quantum Dot Light Emitting Diodes with ZnO Electron Transport Layer[J]. Chinese Journal of Luminescence, 2017, 38(4): 507.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!