光学学报, 2018, 38 (2): 0226001, 网络出版: 2018-08-30  

矢量贝塞尔涡旋波束在均匀单轴各向异性介质中的传输 下载: 707次

Propagation of Vector Bessel Vortex Beams in Homogeneous Uniaxial Anisotropic Media
作者单位
西安电子科技大学物理与光电工程学院, 陕西 西安 710071
摘要
基于电磁场的矢量波函数展开方法和不同坐标系中矢量波函数转化关系,得到了圆对称矢量贝塞尔涡旋波束的圆柱矢量波函数展开系数;结合电磁场边界条件,获得了圆对称矢量贝塞尔涡旋波束以任意方向照射均匀单轴各向异性介质层的反射场、透射场和内部场的展开系数;数值计算了沿波束传播方向横截面上的入射、反射和透射电场强度分布以及xOz平面内传播路径方向的总电场强度分布。结果表明,圆对称贝塞尔涡旋波束入射单轴各向异性介质的反射场基本保持同心圆环结构,但强度分布不再呈圆对称;透射场出现两束交错折射光,总电场强度轮廓显著扭曲。
Abstract
We obtain vector wave function expansion coefficients of the circularly-symmetric vector Bessel vortex beam based on the expansion of electromagnetic field in terms of vector wave function and the transformation of vector wave functions in different coordinate systems. Then, we obtain the expansion coefficients of reflection field, transmission field, and internal field of homogeneous uniaxial anisotropic media, which is illuminated by a circularly-symmetric vector Bessel vortex beam in any direction under the electromagnetic field boundary conditions. At last, we simulate the electric field distributions of reflection field, transmission field, and internal field in the cross sections and the total electric field distribution in xOz plane. The simulated results show that for a circularly-symmetric Bessel vortex beam incidence to uniaxial anisotropic media, the reflection field contour keeps a concentric ring structure, whereas the reflection field intensity distribution is asymmetric; there are two refracted rays in the transmission field, which brings about the distortion of the electric field intensity contour.

1 引言

携带轨道角动量(OAM)的有形波束在光学操控、光学通信和光学探测等领域具有很大的应用潜力。自实验证实拉盖尔-高斯波束具有OAM后[1],这类有形波束的产生方法、传输特性及其应用研究备受学者们的关注[2-4]。高阶贝塞尔波束作为一种涡旋波束,其性质也逐渐引起人们的关注。在应用方面,Qian等[5]实现了高阶贝塞尔波束与有机半导体微型激光器的结合,使激光器的抽运阈值小于100 μJ/cm2;朱清智等[6]提出轴棱锥聚焦贝塞尔-谢尔模型光束产生空心光束的方法,有望应用于光镊等实际应用。在特性分析方面,Volke-Sepulveda等[7]研究了高阶贝塞尔波束的OAM;Wang等[8]给出了圆对称贝塞尔波束的多级展开系数; Porras等[9]详细阐述了高阶贝塞尔波束的无衍射特性; Mitri等[10]模拟了高阶贝塞尔波束对磁电瑞利体的牵引力。随着各向异性介质,尤其是单轴各向异性介质[11]在光学信号处理、光纤设计中得到越来越多的应用[12-13],有形波束与这类介质的相互作用成为新的研究热点。但是矢量涡旋波束电磁场空间振幅和相位比较复杂,且光在单轴各向异性介质中产生双折射,从而使关于矢量涡旋波束在单轴各向异性介质中传输特性的研究还存在一定的难度。

电磁场的矢量波函数展开方法为研究有形波束与各向异性介质的相互作用提供了新渠道。耿友林等[14]将球矢量波函数应用到单轴各向异性球体中研究平面波的电磁散射特性,并与传统洛伦兹-米氏理论方法作比较,证实了该方法的可行性。随后,Wu等[15-16] 将这种方法推广到高斯波束、零阶贝塞尔波束,并对单轴各向异性球的散射求解,该方法也同样适用于手征球体和其他各向异性介质体的散射[17-18]。结合不同坐标系下矢量波函数之间的转换关系,分层介质中的电磁波传播也可以用矢量波函数展开方法求解,如Wang等[19-20]研究了单轴晶体对高斯波束的反射与透射,Yan等[21]利用该方法分析了高斯波束在手征介质板中的传播特性。

本文将电磁场的矢量波函数展开方法推广到矢量涡旋波束的传输中,研究了高阶矢量贝塞尔涡旋波束斜入射单轴各向异性介质层的反射与透射特性。通过球矢量波函数与圆柱矢量波函数的转换关系,结合电磁场的边界条件,导出各个区域高阶贝塞尔波束电磁场的圆柱矢量波函数的展开系数,对高阶贝塞尔波束斜入射到均匀单轴各向异性介质层的入射场、反射场和透射场的横截面场强分布,以及xOz平面内传输路径电场强度空间分布进行了仿真。

2 基本原理

考虑圆对称贝塞尔涡旋波束斜入射放置于空气中的均匀单轴各向异性介质层,建立如图1所示Oxyz全局坐标系。x轴与介质层上边界重合,入射方向与z轴夹角为β,介质层厚度为d,介质的光轴沿z轴方向。入射坐标系OxIyIzI、反射坐标系OxRyRzR的原点与全局坐标系的原点重合,各个局部坐标系的zp(p=I,R,T)轴正方向与波束中心轴方向平行。本文中,时间因子取exp(-iωt)。

图 1. 矢量贝塞尔涡旋波束斜入射单轴各向异性介质层示意图

Fig. 1. Vector Bessel vortex beam oblique incidence to uniaxial anisotropic media

下载图片 查看所有图片

2.1 正入射圆对称矢量贝塞尔涡旋波束的球矢量波函数展开

根据赫兹矢势可知,在局部坐标系OxIyIzI中,圆对称矢量贝塞尔涡旋波束的电场分量表示为[22]

ExI(1,i)=12E0(-i)lexp(ilφI)exp(ikzIzI)(k+kzI)22Jl(kτIρI)+(xI+iyI)22ρI2k2τIJl+2(kτIρI),(1)EyI(1,i)=12E0(-i)lexp(ilφI)exp(ikzIzI)i(k+kzI)22Jl(kτIρI)-i(xI+iyI)22ρI2k2τIJl+2(kτIρI),(2)EzI(1,i)=12E0(-i)lexp(ilφI)exp(ikzIzI)i(xI-yI)ρIkτI(k+kzI)Jl+1(kτIρI),(3)

式中i为虚数单位,E0表示电场振幅,k为空气中入射波波数,l为贝塞尔涡旋波束的阶数,(1,i)代表右旋圆极化,J(·)为柱贝塞尔函数。ρI=xI2+yI2,φI=tan(yI/xI),kτI=ksinα0,kz=kcosα0,其中α0为波束的半锥角。根据Maxwell方程组易得相应的磁场分量表达式。

利用球矢量波函数,矢量贝塞尔涡旋波束电磁场展开为[22]

E=E0n=1m=-nn[amnMmn1(kr,θ,φ)+bmnNmn1(kr,θ,φ)],(4)H=E0kμ0n=1m=-nn[amnNmn1(kr,θ,φ)+bmnMmn1(kr,θ,φ)],(5)

式中rθ″φ″为对应球坐标系的半径、天顶角与方位角,下文中的(r,θ,φ)同理; Mmn1Nmn1为平行于直角坐标系的球矢量波函数,上标(1)表示该球矢量波函数里所包含的贝塞尔函数为第一类球贝塞尔函数,下标mn为电磁场用球矢量波函数展开时用来表示各通项的变量,两者取值范围如(4)式所示;kr为波束与半径的乘积,amnbmn为贝塞尔涡旋波束的展开系数;ω为波束角频率;μ0为空气中的磁导率。为描述方便,将两者默认为左旋圆极化圆对称情况下的贝塞尔涡旋波束展开系数。基于x极化、y极化以及右旋圆极化波束之间的关系[23],amnbmn可表示为

amn=bmn=-in+12(2n+1)(n-m)!n(n+1)(n+m)!×exp(-ikzz0)π×{il+1-mJl+1-m(ρ0)×[πmn(cosα0)+τmn(cosα0)]×exp[i(l+1-m)φ0]},(6)

式中φ0=arctan(y0/x0),ρ0=x02+y02。(x0,y0,z0)为波束中心点即入射坐标系的原点在全局坐标系Oxyz中的位置,角函数πmnτmn的表达式为πmn(cosα0)=mPnm(cosα0)/sinα0,τmn(cosα0)=dPnm(cosα0)/dα0,其中 Pnm(·)为连带勒让德多项式。

2.2 斜入射圆对称矢量贝塞尔涡旋波束的球矢量波函数展开

为了研究波束以任意角度斜入射到介质层的电磁场特性,用任意直角坐标系下的球矢量波函数来表示圆对称矢量贝塞尔涡旋波束的电磁场分量。

图2给出了坐标系Ox″y″z″Oxyz的转换关系,两者可通过欧拉角相互转换[24]。为简化数值运算,考虑αγ均为零,β不为零的情况。需要注意的是,图2所示的Oxyz坐标系即为图1中的全局坐标系,为描述方便,入射角β取负值。

图 2. 任意直角坐标系之间的旋转关系示意图

Fig. 2. Rotation relationship between arbitrary rectangular coordinate systems

下载图片 查看所有图片

不同直角坐标系中球矢量波函数关系式为[25]

(M,N)mn1(kr,θ,φ)=s=-nnψ(m,s,n)(M,N)sn1(kr,θ,φ),(7)ψ(m,s,n)=(-1)s+m(n+m)!(n-s)!(n-m)!(n+s)!12exp(-isβ)usmn(β),(8)usmn(β)=(n+s)!(n-s)!(n+m)!(n-m)!12×σ(-1)n-s-σ(n+m)!(n-m)!(n-s-σ)!(m+s+σ)!(n-m-σ)!σ!cosβ22σ+s+msinβ22n-2σ-s-m,(9)

式中s为(7)式中球矢量波函数各通项的变量,σ的取值范围由阶乘函数自变量的非负性来决定。

将(7)式代入(4)式并交换ms的求和顺序,得到斜入射下圆对称矢量贝塞尔涡旋波束的球矢量波函数展开式为

EI=E0n=1m=-nn[a'mnMmn1(kr,θ,φ)+b'mnNmn1(kr,θ,φ)],(10)

式中(a'mn,b'mn)=s=-nnψ(s,m,n)(asn,bsn)。

2.3 斜入射圆对称矢量贝塞尔涡旋波束的圆柱矢量波函数展开

根据球矢量波函数和圆柱矢量波函数的转化关系,可以得到圆对称矢量贝塞尔涡旋波束在任意直角坐标系下圆柱矢量波函数的展开表达式为

EI=E0m=-π0[Amζm1(h)+Bmζn1(h)]exp(ihz),(11)HI=kμ0E0m=-π0[Amζn1(h)+Bmζm1(h)]exp(ihz),(12)

式中χ=ksinζ,h=kcosζ; m1n1是圆柱矢量波函数,上标(1)表示该函数内的贝塞尔函数为第一类柱贝塞尔函数。k=χρ˙+hz˙, ρ˙z˙为全局坐标系Oxyz所对应圆柱坐标系半径和z轴的基矢。ζkz轴正方向的夹角。展开系数Am(ζ)和Bm(ζ)分别为

Am(ζ)=n=|m|[a'mncmn(ζ)+b'mndmn(ζ)],(13)Bm(ζ)=n=|m|[a'mndmn(ζ)+b'mncmn(ζ)],(14)

式中cmn=im-n-12kτmn(cosζ),dmn=im-n-12kπmn(cosζ)。

2.4 入射场、反射场、透射场及内部场的圆柱矢量波函数展开系数

在自由空间内,(11)式中的入射电场EI可以分解为两部分,即EI=EI1+EI2,其中 EI1的表达式为

EI1=E0m=-0π2Amζm1(h)+Bmζn1(h)]exp(ihz)(15)

EI2的表达式与(15)式类似,ζ的积分区间为[π/2,π]。实际入射时,只有 EI1入射在介质上表面。

类似地,反射场、透射场的电场展开式为

ER=E0m=-0π2Cmζm1(-h)+Dmζn1(-h)]exp(-ihz),(16)ET=E0m=-0π2Gmζm1(h)+Imζn1(h)]exp(ihz),(17)

式中Cm(ζ)、Dm(ζ)和Gm(ζ)、Im(ζ)分别为反射场和透射场的展开系数。已知单轴各向异性介质的介电常数张量ε

ε=εt000εt000εz,

介质的主光轴沿着z轴方向,εt为介质沿垂直于主光轴方向的介电常数,εz为介质沿主光轴方向的介电常数。介质内部区域的电磁场为[26]

EW1=E0q=12m=-0π2Emq(ζ)[αqζm1(hq)+βqζn1(hq)+γqζl1(hq)]exp(ihqz),(18)EW2=E0q=12m=-0π2Fmq(ζ)[αqζm1-hq)+βqζn1-hq)-γqζl1-hq)]exp(-ihqz),(19)

式中 a122εtμ0, a222εzμ0;h1=a12-χ2,h2=a1a2a22-χ2;k1=a1,k2=1a2a12a22-(a12-a22)χ2;α1(ζ)1(ζ)1(ζ)2(ζ)=0;β2(ζ)=-i a23χ×1a12a22-(a12-a22)χ2;γ2(ζ)=-(a12-a22)a2a1×χa22-χ2a12a22-(a12-a22)χ2EmqFmq(q=1,2)分别为内部场 EW1EW2的展开系数。

根据电场的边界条件,在介质的上表面有 EI1r+ERr=EW1r+EW2r, EI1φ+ERφ=EW1φ+EW2φ,在介质的下表面有 EW1r+EW2r=ETr, EW1φ+EW2φ=ETφ。通过电场和磁场以及圆柱矢量波函数之间的转换关系,可以得到对应于电场边界条件的磁场边界条件。

将各场的展开式代入到边界条件中,可以得到展开系数Cm(ζ)、Gm(ζ)、Em1(ζ)、Fm1(ζ)和Dm(ζ),Im(ζ)、Em2(ζ)、Fm2(ζ)其可用Am(ζ)、Bm(ζ)表示为

Cm(ζ)=2h(h1-h)exp[i(h+h1)d]+(h+h1)exp[i(h-h1)d](h+h1)2exp[i(h-h1)d]-(h1-h)2exp[i(h+h1)d]-1Am(ζ),(20)Gm(ζ)=4hh1(h+h1)2exp[i(h-h1)d]-(h1-h)2exp[i(h+h1)d]Am(ζ),(21)Em1(ζ)=2h(h+h1)exp[i(h-h1)d](h+h1)2exp[i(h-h1)d]-(h1-h)2exp[i(h+h1)d]Am(ζ),(22)Fm1(ζ)=2h(h1-h)exp[i(h+h1)d](h+h1)2exp[i(h-h1)d]-(h1-h)2exp[i(h+h1)d]Am(ζ),(23)Dm(ζ)=2Y(X+Y)exp[i(h-h2)d]+(X-Y)exp[i(h+h2)d](Y+X)2exp[i(h-h2)d]-(X-Y)2exp[i(h+h2)d]-1Bm(ζ),(24)Im(ζ)=4XY(Y+X)2exp[i(h-h2)d]-(X-Y)2exp[i(h+h2)d]Bm(ζ),(25)Em2(ζ)=2hk0(X+Y)exp[i(h-h2)d](Y+X)2exp[i(h-h2)d]-(X-Y)2exp[i(h+h2)d]Bm(ζ),(26)Fm2(ζ)=2hk0(X-Y)exp[i(h+h2)d](Y+X)2exp[i(h-h2)d]-(X-Y)2exp[i(h+h2)d]Bm(ζ),(27)

式中X=β2(ζ) h2k2-iγ2(ζ),Y=hk2k02β2(ζ),将上述展开系数代入相应电场的展开式中可以求出对应区域的电场强度。

3 数值仿真结果分析

3.1 入射场、反射场和透射场的归一化场强分布

利用各个场的圆柱矢量波函数展开式数值计算入射场、反射场和透射场的归一化场强 EI/E0ER/E0ET/E0分布,入射波束、反射波束在z=0介质上表面,透射波束在z=d介质下表面,三者沿着传播方向横截面上的归一化场强的分布情况如图3所示。其中,矢量贝塞尔涡旋波束的阶数l=4,半锥角α0=20°,波长 λ=0.6328 μm;单轴各向异性介质层的厚度d=10λ,εt=3k2/(ω2μ0),εz=2k2/(ω2μ0)。入射角β=π/4。各区域中电场的圆柱矢量波函数展开式中m的取值范围为[-60,60]。

图 3. (a)入射场在z=0处、 (b)反射场在z=0处、 (c)透射场在z=d处的横截面的场强分布

Fig. 3. Normalized intensity distributions in cross section of (a) incident field at z=0, (b) reflection field at z=0, and (c) transmission field at z=d

下载图片 查看所有图片

图3(a)可知,圆柱矢量波函数展开方法能够很好地重现圆对称矢量贝塞尔涡旋波束的场强分布特征;图3(b)中反射场的场强分布出现了不对称现象,在x>0的区域尤为明显。这可能是由于入射波束在单轴各向异性介质中多次反射和透射叠加造成的;此外,由于单轴各向异性介质的双折射现象,在图3(c)所示的透射场中,两个光斑产生重合交错,使场强圆形轮廓发生明显扭曲,偏离同心圆环形状。

3.2 传输区域xOz平面内总电场场强分布

为了直观地观察高阶贝塞尔涡旋波束入射单轴各向异性介质的传输情况,数值模拟该波束的反射与透射过程中总电场强度在xOz平面内的分布,图4给出了入射场、反射场、内部场与透射场的归一化场强分布。参数设置与3.1节一致。

图 4. 高阶矢量贝塞尔涡旋波束在单轴各向异性介质中入射场、反射场、内部场与透射场的归一化场强分布

Fig. 4. Normalized intensity distribution of incident, reflection, internal, and transmission fields of high-order vector Bessel vortex beam incidence to uniaxial anisotropic media

下载图片 查看所有图片

图4可知,当主光轴垂直于介质表面的单轴各项异性介质板时,高阶矢量贝塞尔涡旋波束斜入射该介质板之后,折射光主要部分为寻常光,遵循折射定律,且沿着波束传播方向传播,xOz平面上的电场基本呈对称分布,但透射场和反射场强度分布不再呈圆对称分布。

4 结论

利用电磁场的球矢量波函数展开方法以及球矢量波函数与圆柱矢量波函数之间的转换关系,导出了矢量贝塞尔涡旋波束的圆柱矢量波函数展开系数,研究了单轴各向异性介质层中矢量贝塞尔涡旋波束的传输特性,数值计算了高阶贝塞尔波束在入射单轴各向异性介质时入射场、反射场及透射场中波束沿传播方向横截面上的归一化场强分布,并给出了该波束在xOz面内的场强分布。提供了一种研究高阶贝塞尔波束在单轴各向异性介质中传输特性的新思路,该思路同样也适用于手性介质和旋光各向异性等其他介质,这对研究高阶贝塞尔波束在介质传输过程中各类性质诸如能量、极化状态、相位分布以及轨道角动量的变化具有重要的意义,在光学信息、光学探测和利用涡旋波束作为信息载体的通信领域均具有广泛的应用前景。

参考文献

[1] Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

    Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

[2] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.

    Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.

[3] 柯熙政, 胥俊宇. 涡旋光束轨道角动量干涉及检测的研究[J]. 中国激光, 2016, 43(9): 0905003.

    柯熙政, 胥俊宇. 涡旋光束轨道角动量干涉及检测的研究[J]. 中国激光, 2016, 43(9): 0905003.

    Ke X Z, Xu J Y. Interference anddetection of vortex beams with orbital angular momentum[J]. Chinese Journal of Lasers, 2016, 43(9): 0905003.

    Ke X Z, Xu J Y. Interference anddetection of vortex beams with orbital angular momentum[J]. Chinese Journal of Lasers, 2016, 43(9): 0905003.

[4] 柯熙政, 王超珍. 部分相干离轴涡旋光束在大气湍流中的光强分布[J]. 光学学报, 2017, 37(1): 0101005.

    柯熙政, 王超珍. 部分相干离轴涡旋光束在大气湍流中的光强分布[J]. 光学学报, 2017, 37(1): 0101005.

    Ke X Z, Wang C Z. Intensity distribution of partially coherent off-axis vortex beam propagating in atmospheric turbulence[J]. Acta Optica Sinica, 2017, 37(1): 0101005.

    Ke X Z, Wang C Z. Intensity distribution of partially coherent off-axis vortex beam propagating in atmospheric turbulence[J]. Acta Optica Sinica, 2017, 37(1): 0101005.

[5] Qian H, Markman B D, Giebink N C. Vector vortex beam emission from organic semiconductor microlasers[J]. Applied Physics Letters, 2013, 103(16): 161110.

    Qian H, Markman B D, Giebink N C. Vector vortex beam emission from organic semiconductor microlasers[J]. Applied Physics Letters, 2013, 103(16): 161110.

[6] 朱清智, 吴逢铁, 何西. 轴棱锥聚焦贝塞尔-谢尔模型光束产生空心光束[J]. 光学学报, 2016, 36(10): 1026022.

    朱清智, 吴逢铁, 何西. 轴棱锥聚焦贝塞尔-谢尔模型光束产生空心光束[J]. 光学学报, 2016, 36(10): 1026022.

    Zhu Q Z, Wu F T, He X. Generation of hollow beams through focusing J0-correlated Schell-model beams with axicon[J]. Acta Optica Sinica, 2016, 36(10): 1026022.

    Zhu Q Z, Wu F T, He X. Generation of hollow beams through focusing J0-correlated Schell-model beams with axicon[J]. Acta Optica Sinica, 2016, 36(10): 1026022.

[7] Volke-Sepulveda K, Garcés-Chávez V, Chávez-Cerda S, et al. Orbital angular momentum of a high-order Bessel light beam[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4(2): S82-S89.

    Volke-Sepulveda K, Garcés-Chávez V, Chávez-Cerda S, et al. Orbital angular momentum of a high-order Bessel light beam[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4(2): S82-S89.

[8] Wang J J, Wriedt T, Mädler L, et al. Multipole expansion of circularly symmetric Bessel beams of arbitrary order for scattering calculations[J]. Optics Communications, 2017, 387: 102-109.

    Wang J J, Wriedt T, Mädler L, et al. Multipole expansion of circularly symmetric Bessel beams of arbitrary order for scattering calculations[J]. Optics Communications, 2017, 387: 102-109.

[9] Porras M A, Ruiz-Jiménez C. Nondiffracting and nonattenuating vortex light beams in media with nonlinear absorption of orbital angular momentum[J]. Journal of the Optical Society of America B, 2014, 31(11): 2657-2664.

    Porras M A, Ruiz-Jiménez C. Nondiffracting and nonattenuating vortex light beams in media with nonlinear absorption of orbital angular momentum[J]. Journal of the Optical Society of America B, 2014, 31(11): 2657-2664.

[10] Mitri F G, Li R X, Yang R P, et al. Optical pulling force on a magneto-dielectric Rayleigh sphere in Bessel tractor polarized beams[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184: 360-381.

    Mitri F G, Li R X, Yang R P, et al. Optical pulling force on a magneto-dielectric Rayleigh sphere in Bessel tractor polarized beams[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184: 360-381.

[11] Fleck J A, Feit M D. Beam propagation in uniaxial anisotropic media[J]. Journal of the Optical Society of America, 1983, 73(7): 920-926.

    Fleck J A, Feit M D. Beam propagation in uniaxial anisotropic media[J]. Journal of the Optical Society of America, 1983, 73(7): 920-926.

[12] Neira A D, Wurtz G A, Ginzburg P, et al. Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry[J]. Optics Express, 2014, 22(9): 10987-10994.

    Neira A D, Wurtz G A, Ginzburg P, et al. Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry[J]. Optics Express, 2014, 22(9): 10987-10994.

[13] AschyA, TerrienN, RobertS, et al. Enhancement of the total focusing method imaging for immersion testing of anisotropic carbon fiber composite structures[C]//AIP Conference Proceedings, 2017, 1806: 040005.

    AschyA, TerrienN, RobertS, et al. Enhancement of the total focusing method imaging for immersion testing of anisotropic carbon fiber composite structures[C]//AIP Conference Proceedings, 2017, 1806: 040005.

[14] Geng Y L, Wu X B, Li L W, et al. Mie scattering by a uniaxial anisotropic sphere[J]. Physical Review E, 2004, 70(5): 056609.

    Geng Y L, Wu X B, Li L W, et al. Mie scattering by a uniaxial anisotropic sphere[J]. Physical Review E, 2004, 70(5): 056609.

[15] Wu Z S, Li Z J, Li H, et al. Off-axis Gaussian beam scattering by an anisotropic coated sphere[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(12): 4740-4748.

    Wu Z S, Li Z J, Li H, et al. Off-axis Gaussian beam scattering by an anisotropic coated sphere[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(12): 4740-4748.

[16] Li Z J, Wu Z S, Qu T, et al. Light scattering of a non-diffracting zero-order Bessel beam by uniaxial anisotropic bispheres[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 162: 56-65.

    Li Z J, Wu Z S, Qu T, et al. Light scattering of a non-diffracting zero-order Bessel beam by uniaxial anisotropic bispheres[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 162: 56-65.

[17] Chen Z Z, Zhang H Y, Huang Z X, et al. Shaped beam scattering by an anisotropic particle[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189: 238-242.

    Chen Z Z, Zhang H Y, Huang Z X, et al. Shaped beam scattering by an anisotropic particle[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189: 238-242.

[18] Gao X H, Zhang H Y. Scattering of shaped beam by a chiral spheroid[J]. Optik-International Journal for Light and Electron Optics, 2017, 129: 43-49.

    Gao X H, Zhang H Y. Scattering of shaped beam by a chiral spheroid[J]. Optik-International Journal for Light and Electron Optics, 2017, 129: 43-49.

[19] Wang Y, Yu K, Zha X J, et al. Reflection and transmission of Gaussian beam from a uniaxial crystal slab[J]. Europhysics Letters, 2006, 75(4): 569-575.

    Wang Y, Yu K, Zha X J, et al. Reflection and transmission of Gaussian beam from a uniaxial crystal slab[J]. Europhysics Letters, 2006, 75(4): 569-575.

[20] Huang Z X, Xu F, Wang B X, et al. Propagation of Gaussian beam through a uniaxial anisotropic slab[J]. Optics Communications, 2016, 380: 336-341.

    Huang Z X, Xu F, Wang B X, et al. Propagation of Gaussian beam through a uniaxial anisotropic slab[J]. Optics Communications, 2016, 380: 336-341.

[21] Yan B, Zhang H Y, Zhang J Y. Reflection and transmission of Gaussian beam by a chiral slab[J]. Applied Physics B: Lasers and Optics, 2016, 122: 174.

    Yan B, Zhang H Y, Zhang J Y. Reflection and transmission of Gaussian beam by a chiral slab[J]. Applied Physics B: Lasers and Optics, 2016, 122: 174.

[22] Wang J J, Wriedt T, Lock J A, et al. General description of circularly symmetric Bessel beams of arbitrary order[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184: 218-232.

    Wang J J, Wriedt T, Lock J A, et al. General description of circularly symmetric Bessel beams of arbitrary order[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184: 218-232.

[23] Mitria F G, Li R X, Guo L X, et al. Optical tractor Bessel polarized beams[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187: 97-115.

    Mitria F G, Li R X, Guo L X, et al. Optical tractor Bessel polarized beams[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187: 97-115.

[24] Edmonds AR, MendlowitzH. Angular momentum in quantum mechanics[M]. Princeton: Princeton University Press, 1957.

    Edmonds AR, MendlowitzH. Angular momentum in quantum mechanics[M]. Princeton: Princeton University Press, 1957.

[25] Wang J J, Gouesbet G, Han Y P. Transformations of spherical beam shape coefficients in generalized Lorenz-Mie theories through rotations of coordinate systems: II. Axisymmetric beams[J]. Optics Communications, 2010, 283(17): 3226-3234.

    Wang J J, Gouesbet G, Han Y P. Transformations of spherical beam shape coefficients in generalized Lorenz-Mie theories through rotations of coordinate systems: II. Axisymmetric beams[J]. Optics Communications, 2010, 283(17): 3226-3234.

[26] Wang M J, Zhang H Y, Liu G S, et al. Reflection and transmission of Gaussian beam by a uniaxial anisotropic slab[J]. Optics Express, 2014, 22(3): 3705-3711.

    Wang M J, Zhang H Y, Liu G S, et al. Reflection and transmission of Gaussian beam by a uniaxial anisotropic slab[J]. Optics Express, 2014, 22(3): 3705-3711.

刘佳伟, 李海英, 吴振森, 白璐, 李正军. 矢量贝塞尔涡旋波束在均匀单轴各向异性介质中的传输[J]. 光学学报, 2018, 38(2): 0226001. Jiawei Liu, Haiying Li, Zhensen Wu, Lu Bai, Zhengjun Li. Propagation of Vector Bessel Vortex Beams in Homogeneous Uniaxial Anisotropic Media[J]. Acta Optica Sinica, 2018, 38(2): 0226001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!