中国激光, 2013, 40 (5): 0503008, 网络出版: 2013-04-23   

粉末性质对同轴送粉激光熔覆中粉末流场的影响规律

Effect of Powder Properties on the Convergence of Powder Stream in Coaxial Laser Cladding
作者单位
中国科学院力学研究所先进制造工艺力学重点实验室, 北京 100190
摘要
在同轴送粉激光熔覆过程中,粉末流是影响熔覆质量的重要因素。为了提高粉末流的汇聚性,考察粉末性质对粉末流场的影响,建立了同轴送粉激光熔覆粉末流数值模型。模拟计算了NiCoCrAlY、ZrO2、W三种典型粉末的粉末流形貌,并进行了粉末流的验证实验,实验结果与计算结果趋势吻合,说明模型具备合理性与可靠性。基于该模型,深入研究了粉末粒径、形状、密度和碰撞弹性恢复系数对粉末流汇聚的影响规律,在特定送粉工艺参数下,在粉末粒径增大时,汇聚焦距减小,汇聚浓度在一定粒径范围内达到最大值;在粉末形状系数或者密度增大时,汇聚焦距减小、汇聚浓度增大;在粉末颗粒的恢复系数减小时,汇聚焦距与汇聚浓度都增大。
Abstract
The powder stream has an important influence on the quality of coating in coaxial laser cladding. In order to improve the convergence of powder stream, a numerical model of powder stream in coaxial laser cladding is developed based on a given coaxial nozzle. Simulations of three kinds of powder stream, including NiCoCrAlY, ZrO2 ceramic powder and W powder, are calculated and validated by the experimental results. The effect of powder properties, including particle diameter, shape, density and restitution coefficient, on the convergence of powder stream is investigated. According to the calculated results with the same powder feeding parameters, as the particle diameter increases, the powder flow focal distance decreases, and the powder concentration reaches a maximum within some particle diameter scale. The powder concentration gets bigger and the powder flow focal distance becomes shorter with the powder shape factor or powder density increasing. As restitution coefficient decreases, both powder flow distance and powder concentration increase.
参考文献

[1] L. Dubourg, J. Archambeault. Technological and scientific landscape of laser cladding process in 2007 [J]. Surface & Coatings Technology, 2008, 202(24): 5863~5869

[2] Huang Yongjun. Characterization of dilution action in laser-induction hybrid cladding [J]. Opt. & Laser Technol., 2011, 43(5): 965~973

[3] Ehsan Toyserkani, Amir Khajepour, Stephen Corbin. Laser Cladding [M]. Florida: CRC Press, 2005. 1~40

[4] 靳晓曙, 杨洗陈, 冯立伟 等. 激光制造中载气式同轴送粉粉末流场的数值模拟[J]. 机械工程学报, 2007, 43(5): 161~166

    Jin Xiaoshu, Yang Xichen, Feng Liwei et al.. Numerical simulation of coaxial powder flow with carrying gas in laser manufacturing [J]. Chinese J. Mechanical Engineeting, 2007, 43(5): 161~166

[5] 靳绍巍, 何秀丽, 武扬 等. 同轴送粉激光熔覆中粉末流对光束能量的衰减作用[J]. 中国激光, 2011, 38(9): 67~72

    Jin Shaowei, He Xiuli, Wu Yang et al.. Laser power attenuation by powder flow in coaxial laser cladding [J]. Chinese J. Lasers, 2011, 38(9): 67~72

[6] I. Tabernero, A. Lamikiz, S. Martínez et al.. Modelling of energy attenuation due to powder flow-laser beam ineraction during laser cladding process [J]. J. Materials Processing Technology, 2012, 212(2): 516~522

[7] Andrew J. Pinkerton. An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition [J]. J. Phys. (D), 2007, 40(23): 7323~7334

[8] 路桥潘, 张安峰, 李涤尘 等. 载气式同轴送粉喷嘴的数值模拟及实验研究[J]. 中国激光, 2010, 37(12): 3162~3167

    Lu Qiaopan, Zhang Anfeng, Li Dichen et al.. Numerical simulation and experimental research on gas-carrier coaxial powder nozzle [J]. Chinese J. Lasers, 2010, 37(12): 3162~3167

[9] 付伟, 张安峰, 李涤尘 等. 同轴送粉喷嘴三路气流对粉末汇聚特性的影响[J]. 中国机械工程, 2011, 22(2): 220~226

    Fu Wei, Zhang Anfeng, Li Dichen et al.. Influence of three-route gas flows on powder converging behavior in coaxial powder feeding nozzles [J]. China Mechanical Engineering, 2011, 22(2): 220~226

[10] 朱刚贤, 李涤尘, 张安峰 等. 沉积层结构对同轴送粉喷嘴粉末流场的影响规律[J]. 中国激光, 2010, 37(6): 1636~1642

    Zhu Gangxian, Li Dichen, Zhang Anfeng et al.. Influence of deposited layer′s structure on flow field of coaxial powder feeding nozzle [J]. Chinese J. Lasers, 2010, 37(6): 1636~1642

[11] Srdja Zekovi, Rajeev Dwivedi, Radovan Kovacevic. Numerical simulation and experimental invesitgation of gas-powder flow from radially symmetrical nozzles in laser-based direct metal deposition [J]. International J. Machine Tools & Manufacture, 2007, 47(1): 112~123

[12] 谭华, 张凤英, 温如军 等. 激光立体成形粉末流输送的数值模拟研究[J]. 中国激光, 2011, 38(10): 46~53

    Tan Hua, Zhang Fengying, Wen Rujun et al.. Numerical simulation of powder feed of laser solid forming [J]. Chinese J. Lasers, 2011, 38(10): 46~53

[13] Balu Prabu, Leggett Perry, Kovacevic Radovan. Parametric study on a coaxial multi-material powder flow in laser-based powder deposition process [J]. J. Materials Processing Technology, 2012, 212(7): 1598~1610

[14] 武扬. 难熔金属激光熔覆工艺及涂层组织性能研究[D]. 北京: 中国科学院力学研究所, 2011. 13~18

    Wu Yang. Microstructure and Properties of Refractory Alloy Coatings by Laser Cladding Technology [D]. Beijing: Institute of Mechanics, Chinese Academy of Sciences, 2011. 13~18

[15] I. Tabernero, A. Lamikiz, E. Ukar et al.. Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding [J]. J. Materials Processing Technology, 2010, 210(15): 2125~2134

[16] A. Haider, O. Levenspiel. Drag coefficient and terminal velocity of spherical and nonspherical particles [J]. Powder Technology, 1989, 58(1): 63~70

[17] Du Wei, Bao Xiaojun, Xu Jian et al.. Computational fluid dynamics(CFD) modeling of spouted bed: influence of frictional stress, maximum packing limit and coefficient of restitution of particles [J]. Chemical Engineering Science, 2006, 61(14): 4558~4570

刘昊, 虞钢, 何秀丽, 李少霞. 粉末性质对同轴送粉激光熔覆中粉末流场的影响规律[J]. 中国激光, 2013, 40(5): 0503008. Liu Hao, Yu Gang, He Xiuli, Li Shaoxia. Effect of Powder Properties on the Convergence of Powder Stream in Coaxial Laser Cladding[J]. Chinese Journal of Lasers, 2013, 40(5): 0503008.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!