红外与激光工程, 2017, 46 (2): 0204002, 网络出版: 2017-03-31   

红外偏振成像系统高速处理模块设计

Design of high speed processing module for infrared polarization imaging system
作者单位
北京理工大学 光电学院 “光电成像技术与系统”教育部重点实验室, 北京 100081
摘要
基于中波制冷320×256红外焦平面探测器, 设计了以FPGA为处理核心, 集SDRAM存储器及其他功能模块电路为一体, 适用于时间分割型偏振成像系统的高速成像处理模块。处理模块主要由前端与探测器相连的驱动板、以FPGA为核心的处理板和系统电源板等组成, 实现了盲元补偿、非均匀性校正、平台直方图均衡、线性映射等算法和校正参数的在线计算, 具有内外同步可切换、积分时间连续可调的功能, 能够输出分辨率为320×256像素、帧速为200 fps的高质量红外图像, 满足偏振成像系统对运动目标的实时探测要求。采用旋转偏振片的方法对带凹槽塑料水杯开展偏振成像实验, 提取出有效的Stokes参量图像, 观察到显著的偏振特性。该处理模块可广泛用于空间目标探测、地雷探测、海上搜救及伪装目标的探测等领域。
Abstract
The high speed imaging processing module based on MWIR cooled 320×256 detector, SDRAM memory and other function module circuit was designed for time-sharing type polarization imaging system. Processing module mainly included the driver board connected to detector, processing board with FPGA as its core, system power supply board. The algorithm of blind pixels compensation, nonuniformity correction, plateau histogram equalization and linear mapping were implemented, calibration parameters can be calculated online. Image processing module can realize the synchronization switch, integral time adjusted continuously, frame rate up to 200 fps, and output 320×256 pixels high quality infrared image, meeting the requirement of the polarization imaging system to detect moving objects. Infrared polarization imaging experiments on plastic cups with groove were carried out, effective Stokes parameter images were extracted from the polarization images, and the significant polarization properties were observed. The processing module can be applied to the detection of space target, mine detection, maritime search and camouflage target detection.
参考文献

[1] 陈伟力, 王霞, 金伟其,等. 采用中波红外偏振成像的目标探测实验[J]. 红外与激光工程, 2011, 40(1): 7-11.

    Chen Weili, Wang Xia, Jin Weiqi, et al. Experiment of target detection based on medium infrared polarization imaging[J]. Infrared and Laser Engineering, 2011, 40(1): 7-11. (in Chinese)

[2] 虞文俊. 红外偏振成像技术与方法研究[D]. 南京: 南京理工大学, 2014.

    Yu Wenjun. Research on infrared polarization imaging technology and method[D]. Nanjing: Nanjing University of Science& Technology, 2014. (in Chinese)

[3] 姜会林, 付强, 段锦, 等. 红外偏振成像探测技术及应用研究[J]. 红外技术, 2014, 36(5): 345-349.

    Jiang Huilin, Fu Qiang, Duan Jin, et al. Research on infrared polarization imaging detection technology and application[J]. Infrared Technology, 2014, 36(5): 345-349. (in Chinese)

[4] Matchko R M, Gerhart G R. High-speed imaging chopper polarimetry[J]. Optical Engineering, 2008, 47(1): 016001.

[5] Smith M H, Burke P D, Lompado A, et al. Mueller matrix imaging polarimetry in dermatology[C]//SPIE, 2000, 3911: 210-216.

[6] 王霞, 夏润秋, 金伟其, 等. 红外偏振成像探测技术进展[J]. 红外与激光工程, 2014, 43(10): 3175-3182.

    Wang Xia, Xia Runqiu, Jin Weiqi, et al. Technology progress of infrared polarization imaging detection[J]. Infrared and Laser Engineering, 2014, 43(10): 3175-3182. (in Chinese)

[7] Sofradir Corp, LTD. 320×256/256×256 LW IRCMOS multimode integrated detector dewar cooler assembly(IDDCA) with microcooler type k508 technical specification[Z]. Paris: Sofradir Corp, LTD, 2004.

[8] 谢宝蓉, 傅雨田, 张滢清. 320×256长波红外探测器低噪声采集系统设计[J]. 红外技术, 2010, 32(4): 191-194.

    Xie Baorong, Fu Yutian, Zhang Yingqing. Design of the acquisition system with low noise based on 320×256 long wavelength infrared detector [J]. Infrared Technology, 2010, 32(4): 191-194. (in Chinese)

[9] Lopezalonso J M, Alda J. Bad pixel identification by means of principal components analysis[J]. Optical Engineering, 2002, 41(9): 2152-2157.

[10] 张桥舟, 顾国华, 陈钱,等. 基于两点参数及自适应窗口的实时盲元检测和补偿技术[J]. 红外技术, 2013, 35(3): 139-145.

    Zhang Qiaozhou, Gu Guohua, Chen Qian, et al. Real-time blind-pixel detection and compensation technology based on two-point parameters and self-adaptive window[J]. Infrared Technology, 2013, 35(3): 139-145. (in Chinese)

[11] Hsing A T R. Correction of pixel nonuniformities for solid-state imagers[C]//Processing of Images & Data from Optical Sensors, 1981: 218-224.

[12] 孟洋. 实时红外图像对比度增强技术研究[D]. 西安: 西安电子科技大学, 2014.

    Meng Yang. Study on contrast enhancement technology of real-time infrared image[D]. Xi′an: Xidian University, 2014. (in Chinese)

[13] 宋岩峰, 邵晓鹏, 徐军. 基于双平台直方图的红外图像增强算法[J]. 红外与激光工程, 2008, 37(2):308-311.

    Song Yanfeng, Shao Xiaopeng, Xu Jun. New enhancement algorithm for infrared image based on double plateaus histogram [J]. Infrared and Laser Engineering, 2008, 37(2):308-311. (in Chinese)

[14] Specac LTD. Standard infrared polarizers[EB/OL]. [2015-09-20]. http://www.specac.com/products/infrared-polarizer/wire-grid-infrared-polarizer/654.

[15] Meadowlark optics. Liquid crystal device[EB/OL]. [2016-03-20]. http://www.meadowlark.com/mwir-variable-retarder-p-101 mid=2#.V8T2Kvl95D8.

徐超, 何利民, 王霞, 金伟其. 红外偏振成像系统高速处理模块设计[J]. 红外与激光工程, 2017, 46(2): 0204002. Xu Chao, He Limin, Wang Xia, Jin Weiqi. Design of high speed processing module for infrared polarization imaging system[J]. Infrared and Laser Engineering, 2017, 46(2): 0204002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!