红外与激光工程, 2019, 48 (1): 0118002, 网络出版: 2019-04-02   

长焦距同轴四反射镜光学系统设计

Design of coaxial four-mirror anastigmat optical system with long focal length
作者单位
1 苏州大学 物理与光电·能源学部 教育部现代光学技术重点实验室, 江苏 苏州 215006
2 苏州大学 物理与光电·能源学部 江苏省先进光学制造技术重点实验室, 江苏 苏州 215006
3 北京空间机电研究所, 北京 100076
4 航天东方红卫星有限公司, 北京100094
摘要
低成本、高性能对地遥感微纳卫星是当前研究和开发的热点, 为适应微纳卫星平台, 要求空间相机具备小型、轻量化的特点。在其体积和质量的限制下, 设计结构尽可能紧凑的长焦距大视场望远物镜是成功研制高分辨率对地遥感光学相机的关键, 研究利用同轴四反射镜系统解决这一问题的可能性。首先, 介绍无二次遮拦同轴四反射镜望远物镜的组成与工作原理; 基于近轴光学和初级像差理论, 导出几何约束条件和初级像差公式, 给出结构紧凑的长焦距同轴四反镜系统的设计思想与方法; 最后给出举例及设计结果。优化设计了全视场角1°×1°、有效焦距2 100 mm、F数为7的同轴四反射光学系统, 总长228 mm, 约为有效焦距的1/9,结构简单紧凑, 像质接近衍射极限。
Abstract
The earth-observing remote sensing micro/nano satellite with low-cost and high-performance is the focus of the current research and development. In order to adapt to the micro/nano satellite′s platform, the camera is often required to be compact and light weight. Limited of its volume and weight, designing a long focal length, wide-field telescope as compact as possible is the key of successfully manufacturing the high-resolution remote sensing optical camera. The possibility of solving this problem by using on-axis four-mirror system is studied. First of all, the basic composition and the working principle of on-axis four-mirror system without secondary obscuration was introduced. Then, the conditions of geometric constraint and the formulas of primary aberrations were presented based on Gauss and optical aberration theory. The design idea and method of the compact on-axis four-mirror system with long focal length were presented. Finally, an optimized optical system was given, with full field angle is 1°×1°, effective focal length (EFL) is 2 100 mm, F number is 7, respectively. The total length of this system is 228 mm, only about 1/9 of EFL. This optical system is simple and compact and its imaging quality is near diffraction limit.
参考文献

[1] 叶钊, 李熹微, 王超, 等.微纳卫星光学载荷技术发展综述[J]. 航天器工程, 2016, 25(6): 122-130.

    Ye Zhao, Li Xiwei, Wang Chao, et al. Survey of technological development of optical payload for micro/nano satellite[J]. Spacecraft Engineering, 2016, 25(6): 122-130. (in Chinese)

[2] 石荣, 李潇, 邓科. 微纳卫星发展现状及在光学成像侦察中的应用[J]. 航天电子对抗, 2016, 32(1): 8-13.

    Shi Rong, Li Xiao, Deng Ke. Development situation of micro-nano satellite and its application in optical reconnaissance[J]. Aerospace Electronic Warfare, 2016, 32(1): 8-13. (in Chinese)

[3] 郭永祥, 李永强, 廖志波,等. 新型离轴三反射光学系统设计[J]. 红外与激光工程, 2014, 43(2): 546-550.

    (in Chinese)

    Guo Yongxiang, Li Yongqiang, Liao Zhibo, et al. Novel design of off-axis three reflective optical system[J]. Infrared and Laser Engineering, 2014, 43(2): 546-550.

[4] 丁学专, 刘银年, 王欣, 等. 航天遥感反射式光学系统设计[J]. 红外技术, 2007, 29(5): 253-256.

    Ding Xuezhuan, Liu Yinnian, Wang Xin, et al. Design of reflective optic system used in aerospace remote sensing[J]. Infrared Technology, 2007, 29(5): 253-256.

[5] 曲宏松, 金光, 张叶. “NextView计划”与光学遥感卫星的发展趋势[J]. 中国光学与应用光学, 2009, 2(6): 467-476.

    Qu Hongsong, Jin Guang, Zhang Ye. NextView program and progress in optical remote sensing satellites[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(6): 467-476. (in Chinese)

[6] 韦晓孝, 许峰, 余建军. 高分辨率空间同轴偏视场三反光学系统设计[J]. 中国激光, 2012, 39(4): 219-224.

    Wei Xiaoxiao, Xu Feng, Yu Jianjun. Design of Space coaxial field-bias three-mirror optical system with high resolution[J]. Chinese Journal of Lasers, 2012, 39(4): 219-224. (in Chinese)

[7] Lampton M, Sholl M. Comparison of on-axis three-mirror-anastigmat telescopes[C]//SPIE, 2007, 6687(1): 1-5.

[8] Gondoin P. ESA study of a wide field imager for supernovae surveys and dark energy characterization[J]. Bmc Infectious Diseases, 2006, 621(S2): 33.

[9] 韩琳, 赵知诚, 毛保奇,等. 长焦距面视场同轴三反望远物镜设计[J]. 光学学报, 2016, 36(7): 0722006.

    Han Lin, Zhao Zhicheng, Mao Baoqi, et al. Design of coaxial three-mirror anastigmat with long focal length and two-dimensional field of view [J]. Acta Optica Sinica, 2016, 36(7): 0722006. (in Chinese)

[10] 梁士通, 杨建峰, 薛彬,等. 四反射镜光学系统像差分析与设计[J]. 光学学报, 2010, 30(11): 3300-3305.

    Liang Shitong, Yang Jianfeng, Xue Bin, et al. Design of a four-mirror optical system with wide field of view[J]. Acta Optica Sinica, 2010, 30(11): 3300-3305. (in Chinese)

[11] 刘军, 刘伟奇, 康玉思,等. 大视场离轴四反射镜光学系统设计[J]. 光学学报, 2013, 33(10): 228-233.

    Liu Jun, Liu Weiqi, Kang Yusi, et al. Optical design of off-axis four-mirror optical system with wide field of view[J]. Acta Optica Sinica, 2013, 33(10): 228-233. (in Chinese)

[12] 丁学专, 王欣, 兰卫华, 等. 离轴四反射镜光学系统设计[J]. 红外与激光工程, 2008, 37(2): 319-321.

    Ding Xuezhuan, Wang Xin, Lan Weihua, et al. Design of four-mirror reflective anastigmat optic system [J]. Infrared and Laser Engineering, 2008, 37(2): 319-321. (in Chinese)

[13] Robb P N. Reflecting telescope with a spherical primary mirror[J]. Journal of the Optical Society of America, 1979, 69(10): 1439.

[14] 朱立荣. 超大口径四反射镜光学系统设计[D]. 苏州: 苏州大学, 2007.

    Zhu Lirong, Optical design of four-mirror systems with ultra-large aperture [D]. Suzhou: Soochow University, 2007. (in Chinese)

[15] 潘君骅.光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004.

    Pan Junhua. The Design Manufacture and Test of the Aspherical Optical Surfaces[M]. Suzhou: Soochow University Press, 2004. (in Chinese)

陈丽, 刘莉, 赵知诚, 李瀛搏, 傅丹鹰, 沈为民. 长焦距同轴四反射镜光学系统设计[J]. 红外与激光工程, 2019, 48(1): 0118002. Chen Li, Liu Li, Zhao Zhicheng, Li Yingbo, Fu Danying, Shen Weimin. Design of coaxial four-mirror anastigmat optical system with long focal length[J]. Infrared and Laser Engineering, 2019, 48(1): 0118002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!