红外与激光工程, 2017, 46 (12): 1222007, 网络出版: 2018-01-19   

VLC系统偏置电流对LED调制带宽的影响分析

Analysis of influence of VLC system bias current on LED modulation bandwidth
作者单位
陆军装甲兵学院 控制工程系, 北京 100072
摘要
偏置电流对LED内部温度、结电阻和载流子浓度产生的变化导致LED频率响应发生改变。分析了偏置电流对LED频率响应的影响机理以及对调制带宽的影响规律, 并通过测试平台进行了测试验证。结果表明: 红、绿、蓝LED工作在额定功率以下时, 偏置电流与调制带宽基本处于线性正比关系, 在接近和超过额定功率时, 调制带宽变化缓慢并最终趋于稳定。偏置电流对荧光粉LED的调制带宽几乎没有影响。此研究对可见光通信系统偏置电流的选取及均衡电路的设计提供参考。
Abstract
Bias current exerts influence on the LED performance parameters including the internal temperature, junction resistance, and the carrier concentration, which has an effect on frequency response. In this paper, the influence mechanism of bias current on frequency response was analyzed, and the influence trend of DC bias on modulation bandwidth was researched and tested. The results demonstrate that the bias current is basically linearly proportional to the modulation bandwidth while LED′s (red, green or blue) working power is less than the rated power. When the working power is close to or exceeds the rated power, the modulation bandwidth will change slowly and eventually stabilizes. With respect to phosphor LED, the bias current has almost no effect on it. This study may provide reference for the selection of bias current and the design of equalization circuit in visible light communication system.
参考文献

[1] Huang X, Shi J, Li J, et al. 750 Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit[C]//Optical Fiber Communications Conference and Exhibition IEEE, 2015: 1-3.

[2] Huang X, Wang Z, Shi J, et al. 1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver[J]. Optics Express, 2015, 23(17): 22034-22042.

[3] Li H, Chen X, Guo J, et al. A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application[J]. Optics Express, 2014, 22(22): 27203.

[4] Huang Xingxing, Chen Siyuan, Wang Zhixin, et al. 1.2 Gbit/s visible light transmission based on orthogonal frequency-division multiplexing using a phosphorescent white light-emitting diode and a pre-equalization circuit[J]. Chinese Optics Letters, 2015, 13(10): 100602.

[5] Yeh C H, Chow C W, Chen H Y, et al. Adaptive 84.44-190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance.[J]. Optics Express, 2014, 22(8): 9783-9788.

[6] Hao L M, O′Brien D, Faulkner G, et al. 80 Mbit/s visible light communications using pre-equalized white LED[C]// European Conference on Optical Communication. IEEE, 2008: 1-2.

[7] Chun H, Manousiadis P, Rajbhandari S, et al. Visible light communication using a blue GaN, and fluorescent polymer color converter[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2035-2038.

[8] Huang B, Tang D, Chen H, et al. 200 Mb/s visible optical wireless transmission based on NRZ-OOK modulation of, phosphorescent white LED and a pre-emphasis circuit[J]. Chinese Optics Letters, 2014, 12(10): 100604.

[9] 迟楠. LED可见光通信技术[M]. 北京: 清华大学出版社, 2013.

    Chi Nan. LED Visible Light Communication Technologies[M]. Beijing: Tsinghua University Press, 2013. (in Chinese)

[10] Shatalov M, Chitnis A, Koudymov A, et al. Differential carrier lifetime in AlGaN based multiple quantum well deep UV light emitting diodes at 325 nm[J]. Japanese Journal of Applied Physics, 2002, 41(10B): L1146-L1148.

[11] 迟楠. LED可见光通信关键器件与应用[M]. 北京: 人民邮电出版社, 2015.

    Chi Nan. Key Device and Applications of LED Visible Light Communication[M]. Beijing: Post & Telecom Press, 2015. (in Chinese)

[12] 王健, 黄先, 刘丽, 等. 温度和电流对白光LED发光效率的影响[J]. 发光学报, 2008, 29(2): 358-362.

    Wang Jian, Huang Xian, Liu Li, et al. Effect of temperature and current on LED luminous efficiency[J]. Chinese Journal of Luminescence, 2008, 29(2): 358-362. (in Chinese)

[13] 戴树春. 功率效应对功率LED热阻的影响[J]. 发光学报, 2010, 31(6): 877-881.

    Dai Shuchun. Influence of power effect on the thermal resistance of power LED[J]. Chinese Journal of Luminescence, 2010, 31(6):877-881. (in Chinese)

[14] Masanobu S. Internal resistance of an LED as a function of temperature[J]. ISB Journal of Physics, 2010, 4(1): 1-4.

[15] 曹捷. 可见光通信系统的光源特性与调制技术研究[D]. 南京: 南京邮电大学, 2012.

    Cao Jie. Source performance and modulation technique of visible light communication system [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2012. (in Chinese)

宋小庆, 魏有财, 赵梓旭, 王慕煜. VLC系统偏置电流对LED调制带宽的影响分析[J]. 红外与激光工程, 2017, 46(12): 1222007. Song Xiaoqing, Wei Youcai, Zhao Zixu, Wang Muyu. Analysis of influence of VLC system bias current on LED modulation bandwidth[J]. Infrared and Laser Engineering, 2017, 46(12): 1222007.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!