中国激光, 2018, 45 (7): 0706001, 网络出版: 2018-09-11   

单模As-Se红外玻璃光纤的制备及其性能研究 下载: 1039次封面文章

Fabrication of Single-Mode As-Se Infrared Glass Fiber and Its Performance
作者单位
1 宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
2 浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
引用该论文

薛祖钢, 陈朋, 田优梅, 潘章豪, 赵浙明, 王训四, 张培晴, 戴世勋, 聂秋华. 单模As-Se红外玻璃光纤的制备及其性能研究[J]. 中国激光, 2018, 45(7): 0706001.

Zugang Xue, Peng Chen, Youmei Tian, Zhanghao Pan, Zheming Zhao, Xunsi Wang, Peiqing Zhang, Shixun Dai, Qiuhua Nie. Fabrication of Single-Mode As-Se Infrared Glass Fiber and Its Performance[J]. Chinese Journal of Lasers, 2018, 45(7): 0706001.

参考文献

[1] Schliesser A, Picque N, Hansch T W. Mid-infrared frequency combs[J]. Nature Photonics, 2012, 6(7): 440-449.

    Schliesser A, Picque N, Hansch T W. Mid-infrared frequency combs[J]. Nature Photonics, 2012, 6(7): 440-449.

[2] Allen M G. Diode laser absorption sensors for gas-dynamic and combustion flows[J]. Measurement Science & Technology, 1998, 9(4): 545-562.

    Allen M G. Diode laser absorption sensors for gas-dynamic and combustion flows[J]. Measurement Science & Technology, 1998, 9(4): 545-562.

[3] Steinmeyer G, Skibina J S. Supercontinua: Entering the mid-infrared[J]. Nature Photonics, 2014, 8(11): 814-815.

    Steinmeyer G, Skibina J S. Supercontinua: Entering the mid-infrared[J]. Nature Photonics, 2014, 8(11): 814-815.

[4] Swiderski J, Michalska M. High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared[J]. Optics Letters, 2014, 39(4): 910-913.

    Swiderski J, Michalska M. High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared[J]. Optics Letters, 2014, 39(4): 910-913.

[5] Liao M S, Qin G S, Yan X. et al. A Tellurite nanowire with long suspended struts for low-threshold single-mode supercontinuum generation[J]. Journal of Lightwave Technology, 2011, 29(2): 194-199.

    Liao M S, Qin G S, Yan X. et al. A Tellurite nanowire with long suspended struts for low-threshold single-mode supercontinuum generation[J]. Journal of Lightwave Technology, 2011, 29(2): 194-199.

[6] Yu Y, Zhang B, Gai X. et al. 1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power[J]. Optics Letters, 2015, 40(6): 1081-1084.

    Yu Y, Zhang B, Gai X. et al. 1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power[J]. Optics Letters, 2015, 40(6): 1081-1084.

[7] Cheng T L, Kanou Y, Xue X J. et al. Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical filer[J]. Optics Express, 2014, 22(19): 23019-23025.

    Cheng T L, Kanou Y, Xue X J. et al. Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical filer[J]. Optics Express, 2014, 22(19): 23019-23025.

[8] Gao W Q, Amraoui M E, Liao M S. et al. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber[J]. Optics Express, 2013, 21(8): 9573-9583.

    Gao W Q, Amraoui M E, Liao M S. et al. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber[J]. Optics Express, 2013, 21(8): 9573-9583.

[9] Pigeon J J, Tochitsky S Y, Gong C. et al. Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO2 laser pulses[J]. Optics Letters, 2014, 39(11): 3246-3249.

    Pigeon J J, Tochitsky S Y, Gong C. et al. Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO2 laser pulses[J]. Optics Letters, 2014, 39(11): 3246-3249.

[10] Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nature Photonics, 2011, 5(3): 141-148.

    Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nature Photonics, 2011, 5(3): 141-148.

[11] Shiryaev V S, Churbanov M F. Trends and prospects for development of chalcogenide fibers for mid-infrared transmission[J]. Journal of Non-Crystalline Solids, 2013, 377: 225-230.

    Shiryaev V S, Churbanov M F. Trends and prospects for development of chalcogenide fibers for mid-infrared transmission[J]. Journal of Non-Crystalline Solids, 2013, 377: 225-230.

[12] Petersen C R, Møller U, Kubat I. et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11): 830-834.

    Petersen C R, Møller U, Kubat I. et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11): 830-834.

[13] Theberge F, Thire N, Daigle J F, et al. Multioctave infrared supercontinuum generation in large-core As2S3 fibers[J]. Optics Letters, 2014, 39(22): 6474-6477.

    Theberge F, Thire N, Daigle J F, et al. Multioctave infrared supercontinuum generation in large-core As2S3 fibers[J]. Optics Letters, 2014, 39(22): 6474-6477.

[14] Chang T L, Nagasaka K, Tuan T H. et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(9): 2117-2120.

    Chang T L, Nagasaka K, Tuan T H. et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(9): 2117-2120.

[15] 郭威, 张斌, 翟诚诚, 等. 小芯径硫系玻璃光纤的制备及其非线性光学应用[J]. 无机材料学报, 2016, 31(2): 180-184.

    郭威, 张斌, 翟诚诚, 等. 小芯径硫系玻璃光纤的制备及其非线性光学应用[J]. 无机材料学报, 2016, 31(2): 180-184.

    Guo W, Zhang B, Zhai C C, et al. Fabrication and application of small core chalcogenide glass fibers in nonlinear optics[J]. Journal of Inorganic Materials, 2016, 31(2): 180-184.

    Guo W, Zhang B, Zhai C C, et al. Fabrication and application of small core chalcogenide glass fibers in nonlinear optics[J]. Journal of Inorganic Materials, 2016, 31(2): 180-184.

[16] 王莹莹, 戴世勋, 罗宝华, 等. 硫系光纤红外超连续谱输出研究进展[J]. 激光与光电子学进展, 2016, 53(9): 090005.

    王莹莹, 戴世勋, 罗宝华, 等. 硫系光纤红外超连续谱输出研究进展[J]. 激光与光电子学进展, 2016, 53(9): 090005.

    Wang Y Y, Dai S X, Luo B H, et al. Progress in infrared supercontinuum generation in chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090005.

    Wang Y Y, Dai S X, Luo B H, et al. Progress in infrared supercontinuum generation in chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090005.

[17] Møller U, Yu Y, Kubat I. et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber[J]. Optics Express, 2015, 23(3): 3282-3291.

    Møller U, Yu Y, Kubat I. et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber[J]. Optics Express, 2015, 23(3): 3282-3291.

[18] Liu L, Cheng T L, Nagasaka K. et al. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion[J]. Optics Letters, 2016, 41(2): 392-395.

    Liu L, Cheng T L, Nagasaka K. et al. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion[J]. Optics Letters, 2016, 41(2): 392-395.

[19] Sun Y N, Dai S X, Zhang P Q. et al. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures[J]. Optics Express, 2015, 23(18): 23472-23483.

    Sun Y N, Dai S X, Zhang P Q. et al. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures[J]. Optics Express, 2015, 23(18): 23472-23483.

[20] 赵浙明, 吴波, 刘雅洁, 等. 低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析[J]. 物理学报, 2016, 65(12): 124205.

    赵浙明, 吴波, 刘雅洁, 等. 低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析[J]. 物理学报, 2016, 65(12): 124205.

    Zhao Z M, Wu B, Liu Y J, et al. Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber[J]. Acta Physica Sinica, 2016, 65(12): 124205.

    Zhao Z M, Wu B, Liu Y J, et al. Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber[J]. Acta Physica Sinica, 2016, 65(12): 124205.

[21] Zhao Z M, Wang X S, Dai S X. et al. 1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(22): 5222-5225.

    Zhao Z M, Wang X S, Dai S X. et al. 1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(22): 5222-5225.

[22] 吴波, 赵浙明, 王训四, 等. Te基远红外硫系玻璃光纤的制备及性能分析[J]. 物理学报, 2017, 66(13): 134208.

    吴波, 赵浙明, 王训四, 等. Te基远红外硫系玻璃光纤的制备及性能分析[J]. 物理学报, 2017, 66(13): 134208.

    Wu B, Zhao Z M, Wang X S, et al. Investigation on Te-based chalcogenide glasses for far-infrared fibe[J]. Acta Physica Sinica, 2017, 66(13): 134208.

    Wu B, Zhao Z M, Wang X S, et al. Investigation on Te-based chalcogenide glasses for far-infrared fibe[J]. Acta Physica Sinica, 2017, 66(13): 134208.

[23] Zhao Z M, Wu B, Wang X S. et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber[J]. Laser and Photonics Review, 2017, 11(2): 1700005.

    Zhao Z M, Wu B, Wang X S. et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber[J]. Laser and Photonics Review, 2017, 11(2): 1700005.

[24] 聂秋华, 王国祥, 王训四, 等. Ga对新型远红外Te基硫系玻璃光学性能的影响[J]. 物理学报, 2010, 59(11): 7949-7955.

    聂秋华, 王国祥, 王训四, 等. Ga对新型远红外Te基硫系玻璃光学性能的影响[J]. 物理学报, 2010, 59(11): 7949-7955.

    Nie Q H, Wang G X, Wang X S, et al. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses[J]. Acta Physica Sinica, 2010, 59(11): 7949-7955.

    Nie Q H, Wang G X, Wang X S, et al. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses[J]. Acta Physica Sinica, 2010, 59(11): 7949-7955.

[25] 刘硕, 唐俊州, 刘自军, 等. 低损耗硫系玻璃光纤的挤压制备及其性能研究[J]. 光学学报, 2016, 36(10): 1006002.

    刘硕, 唐俊州, 刘自军, 等. 低损耗硫系玻璃光纤的挤压制备及其性能研究[J]. 光学学报, 2016, 36(10): 1006002.

    Liu S, Tang J Z, Liu Z J, et al. Fabrication and properties of low-loss chalcogenide optical fiber based on the extrusion method[J]. Acta Optica Sinica, 2016, 36(10): 1006002.

    Liu S, Tang J Z, Liu Z J, et al. Fabrication and properties of low-loss chalcogenide optical fiber based on the extrusion method[J]. Acta Optica Sinica, 2016, 36(10): 1006002.

[26] Jiang C, Wang X S, Zhu M M. et al. Preparation of chalcogenide glass fiber using an improved extrusion method[J]. Optical Engineering, 2016, 55(5): 056114.

    Jiang C, Wang X S, Zhu M M. et al. Preparation of chalcogenide glass fiber using an improved extrusion method[J]. Optical Engineering, 2016, 55(5): 056114.

[27] Robichaud L R, Fortin V, Gauthier J C. et al. Compact 3-8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber[J]. Optics Letters, 2016, 41(20): 4605-4608.

    Robichaud L R, Fortin V, Gauthier J C. et al. Compact 3-8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber[J]. Optics Letters, 2016, 41(20): 4605-4608.

薛祖钢, 陈朋, 田优梅, 潘章豪, 赵浙明, 王训四, 张培晴, 戴世勋, 聂秋华. 单模As-Se红外玻璃光纤的制备及其性能研究[J]. 中国激光, 2018, 45(7): 0706001. Zugang Xue, Peng Chen, Youmei Tian, Zhanghao Pan, Zheming Zhao, Xunsi Wang, Peiqing Zhang, Shixun Dai, Qiuhua Nie. Fabrication of Single-Mode As-Se Infrared Glass Fiber and Its Performance[J]. Chinese Journal of Lasers, 2018, 45(7): 0706001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!