量子电子学报, 2019, 36 (1): 116, 网络出版: 2019-04-03   

Al掺杂TiO2基晶体材料电子结构及光学性质的理论研究

Theoretical research of electronic structure and optical properties of Al-doped TiO2 crystalline materials
唐文翰 1,2,*房慧 1,2,3,4李凡生 1,2黄灿胜 1,2余小英 1,2郑鑫 1,2王如志 3,4
作者单位
1 广西民族师范学院 物理与电子工程学院
2 广西 崇左 532200
3 北京工业大学 材料科学与工程学院
4 北京 100124
摘要
采用密度泛函理论计算分析的方法系统研究了Al掺杂TiO2基晶体材料的电子结构和光学性质.结果表明,本征TiO2材料具有直接带隙型能带,其带隙宽度为2.438 eV,Al掺杂TiO2材料同样具有直接带隙型能带,其带隙宽度降低至2.329 eV.本征TiO2与Al掺杂的TiO2材料均含有五个子能带,但是Al掺杂TiO2 材料子能带位置发生改变.Al掺杂在TiO2材料价带中引入大量新的能级,降低了费米能级上的态密度,Al掺杂为n型掺杂.对于Al掺杂TiO2材料来说, s态电子和p态电子主要在Al 掺杂TiO2 材料的带内跃迁过程起较大的作用.Al掺杂的TiO2材料最强的介电吸收峰在320 nm附近,Al掺杂拓展了TiO2材料的光吸收范围,其介电吸收能量范围向长波方向移动.本征TiO2及Al掺杂TiO2材料在1000 nm 以下波长的折射率曲线相似.Al掺杂TiO2材料在500 nm以下的折射率较本征TiO2材料降低,而500 nm 以上折射率较本征TiO2 材料增大.
Abstract
The electronic structure and optical properties of the Al-doped TiO2 crystalline material is investigated by density functional theory calculation method. The results show that the intrinsic TiO2 has direct energy gap of 2.438 eV, the Al-doped TiO2 has decreased direct energy gap of 2.329 eV. The intrinsic TiO2 and the Al-doped TiO2 both have five sub-bands, but the regions that the sub-band location has changed for the Al-doped TiO2. The Al has introduced many new bands within the valance bands; the density of states at Fermi level has been also decreased. The Al-doping is n type doping for the TiO2 material. The s and p electrons contribute to the mobility of carriers within the bands. The dielectric absorption peak of Al-doped TiO2 locates at 320 nm, the absorption region is widened by Al-doping and the absorption region has moved to long wave light area. Both systems have the similar refractive index curves under 1000 nm. The refractive index of Al-doped TiO2 is decreased under 500 nm, and it is increased above 500 nm comparing with the intrinsic TiO2.
参考文献

[1] Utu I D, Marginean G, Hulka I, et al . Properties of the thermally sprayed Al2O3-TiO2 coatings deposited on titanium substrate[J]. International Journal of Refractory Metals and Hard Materials, 2015, 51: 118-123.

[2] Roca R A, Guerrero F, Eiras J A, et al . Structural and electrical properties of Li-doped TiO2 rutile ceramics[J]. Ceramics International, 2015, 41: 6281-6285.

[3] Anh L T, Rai A K, Thi T V, et al . Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 243: 891-898.

[4] Meng R J, Hou H Y, Liu X X, et al . Reassessment of the roles of Ag in TiO2 nanotubes anode material for lithium ion battery[J]. Ceramics International, 2015, 41: 9988-9994.

[5] McManamon C, Connell J, Delaney P, et al . A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity[J]. Journal of Molecular Catalysis A:Chemical, 2015, 406: 51-57.

[6] Li Y, Wang Y, Kong J, et al . Synthesis and characterization of carbon modified TiO2 nanotube and photocatalytic activity on methylene blue under sunlight[J].Applied Surface Science, 2015, 344: 176-180.

[7] Gong Y, Chu R, Xu Z, et al . Electrical propertiesof Ta2O5-doped TiO2 varistor ceramics sintered at low-temperature[J]. Ceramics International, 2015, 41: 9183-9187.

[8] Jiang P, Xiang W, Kuang J, et al . Effect of cobalt doping on the electronic, optical and photocatalytic properties of TiO2[J]. Solid State Science, 2015, 46: 27-32.

[9] Zhao D, Yu Y, Cao C, et al . The existing states of doped B3+ ions on the B doped TiO2[J]. Applied Surface Science, 2015, 345: 67-71.

[10] Su D Z, Xu J M, Shao L Y, et al . A study of the calculation of optical constants for SiO2 by means of Kramers-Kronig relation[J]. Chinese Journal of Infrared Research (红外研究), 1986, 5: 175-180 (in Chinese).

[11] Harada Y, Hoshina K, Inagaki H, et al . Influence of synthesis conditions on crystal formation and electrochemical properties of TiO2(B) particles as anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2013, 112: 310-317.

[12] Payne M C, Teter M P, Allan D C, et al . Iterative minimization techniques for abinitio total-energy calculations-molecular-dynamics and conjugate gradients[J]. Review of Modern Physics, 1992, 64: 1045.

[13] Jiang P, Xiao W, Kuang J, Liu W, Cao W, Effect of cobalt doping on the electronic, optical and photocatalytic properties of TiO2[J].Solid State Sciences, 2015, 46: 27-32.

唐文翰, 房慧, 李凡生, 黄灿胜, 余小英, 郑鑫, 王如志. Al掺杂TiO2基晶体材料电子结构及光学性质的理论研究[J]. 量子电子学报, 2019, 36(1): 116. TANG Wen-han, FANG Hui, LI Fan-sheng, HUANG Can-Sheng, YU Xiao-ying, ZHENG Xin, WANG Ru-zhi. Theoretical research of electronic structure and optical properties of Al-doped TiO2 crystalline materials[J]. Chinese Journal of Quantum Electronics, 2019, 36(1): 116.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!