光学技术, 2023, 49 (6): 692, 网络出版: 2023-12-05  

五维自动调整差动共焦间隙测量方法

Differential confocal axial space measurement method based on five-dimensional auto-adjustment
作者单位
北京理工大学 光电学院 “复杂环境智能感测技术”工信部重点实验室, 北京100081
摘要
为精确、快速测量镜组内各透镜间的轴向间隙, 提出一种基于五维自动调整的差动共焦间隙测量方法。该方法根据CCD探测器实时获取的光斑信号检测被测镜组光轴的平移偏差与倾斜偏差, 依据偏差信息、通过五维自动调整技术实现镜组高精度调整, 再利用差动共焦高精度层析定焦和镜组内部光线追迹实现轴向间隙高精度测量。分析和实验表明, 本方法可以有效提高姿态调整效率3.4倍, 透镜间隙重复测量精度可达到0.53μm。该方法为实现镜组间隙的快速高精度测量提供了有效途径, 同时还为透镜的中心厚度、焦距、半径等多种参数快速高精度测量提供了有效方法。
Abstract
In order to accurately and quickly measure the axial gap between each lens in the mirror group, a differential confocal gap measurement method based on five-dimensional automatic adjustment is proposed. This method detects the translation deviation and tilt deviation of the optical axis of the lens group under test according to the spot signal obtained in real time by the CCD detector, realizes the high-precision adjustment of the mirror group according to the deviation information, and realizes the high-precision measurement of the axial gap by using the differential confocal high-precision tomography fixed focus and the internal light tracing of the mirror group. Analysis and experimental results show that the method can effectively improve the attitude adjustment efficiency by 3.4 times, and the accuracy of lens gap repeat measurement can reach 0.53μm. This method provides an effective way to achieve fast and high-precision measurement of lens group gap, and also provides an effective method for rapid and high-precision measurement of various parameters such as center thickness, focal length, and radius of the lens.
参考文献

[1] 徐明飞, 庞武斌, 徐象如, 等. 高数值孔径投影光刻物镜的光学设计[J]. 光学精密工程,2016,24(4):740-746.

[2] 陈姣, 焦明印, 常伟军, 等. 近紫外-可见光宽波段复消色差显微物镜设计[J]. 应用光学,2011,32(6):1098-1102.

[3] Tim P Johnson, Devon G Crowe. Optical design and intensity interferometry simulations in support of the Kilometer Space Telescope[J]. Appl. Opt.,2021,60(12):3464-3473.

[4] 李升辉. 大相对孔径高分辨率手机镜头设计[J]. 激光技术,2022,46(1):139.

[5] 杨李茗, 叶海仙. 大口径大曲率半径光学元件的高精度检测[J].光学精密工程,2011,19(6):1207-1212.

[6] 曹钟予, 向阳. 长工作距的 3D 变倍外视镜光学系统设计[J]. 红外与激光工程,2022,51(7):20210808-1-20210808-10.

[7] 邱丽荣, 李佳, 赵维谦, 等. 激光共焦透镜曲率半径测量系统[J]. 光学精密工程,2013,21(2):246-252.

[8] 管伟, 王章利, 王中强, 等. 光学镜头轴线精确定心校准技术[J].应用光学,2018,39(2):252-256.

[9] 朱逸臻, 李顺尧, 卓双木, 等. 目标识别近距离车载镜头光学系统设计[J]. 激光与光电子学进展,2022,59(17):1722001.

[10] 牛锦川, 张凯, 赵英龙, 等. 一种非接触式红外透镜间距测试方法[J]. 航天返回与遥感,2022,43(2):56-61.

[11] Langehanenberg P, Dumitrescu E, Heinisch J, et al. Automated measurement of centering errors and relative surface distances for the optimized assembly of micro-optics[C]//Micromachining and Microfabrication Process Technology XVI. USA:SPIE,2011,7926:91-98.

[12] 李靖, 张伟, 邵斌, 等. 基于差分探测的低相干外差干涉间隙测量技术[J]. 光子学报,2021,50(9):0906004.

[13] 宁悦文, 胡摇, 陶鑫, 等. 基于偏振衍射色散共焦的光学元件轴向间距测量[J]. 应用光学,2021,42(4):698.

[14] Zhao W Q, Sun R D, Qiu L R, et al. Lenses axial space ray tracing measurement[J]. Optics Express,2010,18(4):3608-3617.

[15] Zhao W Q, Tan J B, Qiu L R. Bipolar absolute differential confocal approach to higher spatial resolution[J]. Optics express,2004,12(21):5013-5021.

[16] 李彦宏, 杨帅, 唐顺, 等. 后置分光瞳激光差动共焦曲率半径测量[J].光学精密工程,2021,29(10):2287-2295.

[17] Yang S, Liu Z, Ma X, et al. Interferometric microscope with a confocal focusing for inner surface defect detection of ICF capsule[J]. Optics Express,2021,29(23):38924-38938.

[18] 郭浩, 肖阳, 董松, 等. 激光共焦球面元件姿态自动调整系统[J]. 应用光学,2019,40(1):132.

[19] 沈阳. 激光共焦透镜轴向间隙测量技术研究[D]. 北京: 北京理工大学,2015.

崔明拓, 邱丽荣, 崔健, 杨帅. 五维自动调整差动共焦间隙测量方法[J]. 光学技术, 2023, 49(6): 692. CUI Mingtuo, QIU Lirong, CUI Jian, YANG Shuai. Differential confocal axial space measurement method based on five-dimensional auto-adjustment[J]. Optical Technique, 2023, 49(6): 692.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!