光学技术, 2023, 49 (6): 641, 网络出版: 2023-12-05  

超轻量化碳化硅扫描反射镜组件设计

Design of Ultra-lightweight SIC scanning mirror assembly
作者单位
季华实验室, 广东 佛山 528200
摘要
为实现(165mm×96mm)矩形扫描反射镜组件的轻量化并保证反射镜面形精度与组件支撑刚度, 提出了一种锥套柔节一体化的背部支撑方法, 实现了重量小于0.5kg的超轻量化碳化硅反射镜组件设计。镜体材料的选择为碳化硅, 支撑结构材料选择了铟钢。通过有限元仿真对扫描反射镜组件进行了仿真分析, 并采用ZYGO干涉仪对实际的反射镜组件进行了检测。实验表明, 在各方向重力的工况和轴系驱动时的扭矩作用下, 扫描反射镜面形误差的均方根值(RMS)最大值为9.705nm, 实际测试结果为10.125nm, 误差为4%, 满足RMS值优于12.6nm的要求; 组件一阶固有频率302.25Hz, 满足刚度要求。研究结果表明, 锥套柔节一体化背部支撑方法合理、有效, 解决了结构超轻量化与结构刚度、光学面形精度难以同时保证的难题。
Abstract
In order to realize the lightweight of the (165mm×96mm) rectangular scanning mirror assembly and ensure the accuracy of the mirror shape and the support stiffness of the assembly, a back support method with the integration of cone-sleeve and flexible joints was proposed, and the weight of the mirror assembly designed with this method is less than 0.5kg. The mirror body was made of silicon carbide and the supporting structure was made of indium steel. The support stiffness and surface accuracy of the scanning mirror assembly are simulated and analyzed by finite element analysis and verified by actual testing. The results show that the maximum root mean square (RMS) value of the scanning mirror shape error is 9.705nm, the actual test result 10.125nm, the error is 4% and meets the requirement that the RMS value should be less than 12.6nm in the case of gravity in all directions and the torque of the shaft-driven. The first-order natural frequency of the component was 302.25Hz, which met the stiffness requirements. The results show that the proposed method is reasonable and effective, which solves the problem that the ultra-lightweight structure and the structural stiffness and optical surface accuracy are difficult to guarantee at one time.
参考文献

[1] Si Z, Shen X, Zhu J X, et al. All-reflective self-referenced spectral interferometry for singleshot measurement of few-cycle femtosecond pulsesin a broadband spectral range[J]. Chinese Optics Letters,2020,18(2):021202.

[2] Jin R, Yu Y L, Shen D, et al. Flexible, video-rate, and aberration-compensated axial dual-line scanning imaging with field-of-view jointing and stepped remote focusing[J]. Photonics Research,2021,9(8):1477-1485.

[3] Zheng C, Jin D, He Y, et al. High spatial and temporal resolution synthetic aperture phase microscopy[J]. Advanced Photonics,2020,2(6):065002.

[4] 陈伟, 丁亚林, 惠守文, 等. 碳化硅扫描反射镜支撑结构设计[J]. 中国光学,2012,5(2):161-166.

[5] 张健. 全景式航空遥感器焦平面组件TDI方向标定方法研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所,2018:1-10.

[6] 李延伟, 张景国, 谢新旺, 等, 大口径矩形碳化硅扫描反射镜组件研制技术[J]. 激光与光电子学进展,2022,3(1):052201.

[7] 李诚良, 丁亚林, 刘磊. 大口径反射镜水平集拓扑优化设计[J]. 红外与激光工程,2018,47(9):0918001.

[8] 衡楠, 郑锋华, 李金鹏. 直升机机载扫描反射镜组件随机振动仿真分析[J].机械设计与制造,2020,352(06):290-293+297.

[9] 刘波,丁亚林,贾继强等.反射镜背部嵌套粘接支撑结构的设计与分析[J].激光与光电子学进展,2013,50(09):90-95.

[10] Hookman Robert A.; Zurmehly George E.; Hodgman Nick S. Scanning mirror design considerations for a geostationary spaceborne radiometer[J]. Journal. Volume 1693,Issue.1992:318-329.

[11] 王孝坤. 大口径离轴碳化硅非球面反射镜加工与检测技术研究[J].激光与光电子学进展,2012,49(01):71-75.

[12] 邵山川, 陶小平, 王孝坤. 基于条纹反射的超精密车削反射镜的在位面形检测[J].激光与光电子学进展,2018,55(07):299-307.

殷龙海, 李骏驰, 李延伟, 谢新旺, 周育乐, 郑仲, 李鑫. 超轻量化碳化硅扫描反射镜组件设计[J]. 光学技术, 2023, 49(6): 641. YIN Longhai, LI Junchi, LI Yanwei, XIE Xinwang, ZHOU Yule, ZHENG Zhong, LI Xin. Design of Ultra-lightweight SIC scanning mirror assembly[J]. Optical Technique, 2023, 49(6): 641.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!