中国激光, 2016, 43 (4): 0405002, 网络出版: 2016-03-29   

大气湍流综合效应下空间分集接收性能研究

Performance Analysis of Spatial-Diversity Reception over Combined Effects of Atmospheric Turbulence
作者单位
1 长春理工大学空间光通信研究所, 长春 吉林 130000
2 吉林化工学院信息与控制工程学院, 吉林 吉林 132022
摘要
分析和研究大气湍流和瞄准误差综合效应下,空间分集接收技术对差分相移键控(DPSK)光通信性能的改善。在不同湍流情况下,讨论采用多入多出(MIMO)和单入多出(SIMO)空间分集技术的系统性能;并将3种分集合并技术对系统误码率(BER)和中断概率的影响进行分析;采用广义超几何方法推导出自由空间光通信(FSO)系统误码率闭合表达式。由分析和实验结果可知:空间分集技术可以提高系统误码率并降低中断概率,有效地改善大气湍流引起的信道衰落;当分集数增大时,系统性能改变越明显。对比3种分集技术,最大比合并接收分集技术最为优越。
Abstract
The improvement for the spatial-diversity reception technology with the combined effect of atmospheric turbulence and pointing errors based on differential phase shift keying (DPSK) modulation is analyzed and studied. The performance of spatical-diversity reception for multiple input multiple output (MIMO) and single input multiple output (SIMO) systems is discussed, and the bit error rate (BER) and outage probability for three types of diversity reception technologies are investigated under different turbulence situations, and the novel closed form expressions of BER and outage probability for free space optical communication(FSO) system are derived with the generalized hypergeometric method. The analysis and experiment results show that the performance of BER can be improved, the outage probability can be degraded with the spatial-diversity reception technology, and channel fading caused by atmospheric turbulence can be effectively improved. With the number of diversity increased, performance of FSO system is improved obviously. Compared with three diversity reception technologies, the maximum ratio combining diversity reception technology is most advantageous.
参考文献

[1] 姜会林. 空间激光通信技术与系统[M]. 北京: 国防工业出版社, 2010: 35-52.

    Jiang Huilin. The technologies and systems of space laser communication[M]. Beijing: National Defence Industry Press, 2010: 35-52.

[2] Heba Yuksel, Christopher C Davis. Aperture averaging analysis and aperture shape invariance of received scintillation in free space optical communication links[C]. SPIE, 2006, 6304: 63041E.

[3] 武云云. 自适应光学技术在大气光通信中的研究[D]. 北京: 中国科学院大学, 2013.

    Wu Yunyun. Application research of adaptive optics technique in atmospheric optical communications[D]. Beijing: University of Chinese Academy of Sciences, 2013.

[4] 武云云, 李新阳, 饶长辉. 大气湍流像差对空间零差二进制相移键控相干光通信误码性能的影响[J]. 光学学报, 2014, 33(6): 0606002.

    Wu Yunyun, Li Xinyang, Yao Changhui. Effect of atmospheric turbulent aberration on the bit-error performance of homodyne binary phase shift keying coherent optical communication[J]. Acta Optica Sinica, 2014, 33(6): 0606002.

[5] E Bayki, R Schober, R K Mallik. Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading[J]. IEEE Transactions on Communications, 2009, 57(11): 3415-3424.

[6] T A Tsiftsis, H G Sandalidis, G K Karagiannidis, et al.. Optical wireless links with spatial diversity over strong atmospheric turbulence channels[J]. IEEE Transactions on Wireless Communications, 2009, 8(2): 951-957.

[7] M Safari, S Hranilovic. Diversity and multiplexing for near- field atmospheric optical communication[J]. IEEE Transactions on Communications, 2013, 61(5): 1988-1997.

[8] 赵静, 赵尚弘, 李勇军, 等. 空间分集技术在航空激光通信中的应用研究[J]. 激光与光电子学进展, 2015, 52(8): 080603.

    Zhao Jing, Zhao Shanghong, Li Yongjun, et al.. Application of spatial diversity technology for airborne laser communication[J]. Laser & Optoelectronics Progress, 2015, 52(8): 080603.

[9] 王翔, 赵尚弘, 郑光威, 等. 基于空间分集的高空平台光链路性能研究[J]. 光学学报, 2014 , 34(1): 0106001.

    Wang Xiang, Zhao Shanghong, Zheng Guangwei, et al.. Performance analysis of high altitude platform optical communication links with spatial diversity[J]. Acta Optica Sinica, 2014 , 34(1): 0106001.

[10] J Li, J Q Liu, D P Taylor. Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channel[J]. IEEE Transactions on Communications, 2007, 55(8): 1598-1606.

[11] K Kiasaleh. Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence[J]. IEEE Transactions on Wireless Communications, 2006, 54(4): 604-607.

[12] Song Gao, Anhong Dang, Hong Guo. Performance of wireless optical communication systems using DPSK modulation[C]. 11th International Conference on Advanced Communication Tecnology, 2009: 1793-1796.

[13] 唐雁峰, 李锐, 夏丹, 等. 空间光通信中光MIMO 系统性能仿真[J]. 长春理工大学学报(自然科学版), 2014, 37(4): 52-55.

    Tang Yanfeng, Li Rui, Xia Dan, et al.. Performance simulation of MIMO system in space optical communication[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2014, 37(4): 52-55.

[14] 陈丹, 柯熙政. 副载波调制无线光通信分集接收技术研究[J]. 通信学报, 2012, 33(8): 128-133.

    Chen Dan, Ke Xizheng. Research on diversity receive technology on wireless optical communication using subcarrier modulation[J]. Journal on Communications, 2012, 33(8): 128-133.

[15] Mohammadreza A Kashani, M Uysal, M Kavehrad. A novel statistical channel model for turbulence-induced fading in free-space optical systems[J]. J Lightwave Technol, 2015, 33(11): 2303-2312.

[16] 韩立强, 游雅晖. 大气湍流及瞄准误差联合效应下自由空间光通信的性能[J]. 光学学报, 2014, 34(11): 1106005.

    Han Liqiang, You Yahui. Performance of free space optical communication with combined effects from atmospheric turbulence and pointing errors[J]. Acta Optica Sinica, 2014, 34(11): 1106005.

[17] Harilaos G Sandalidis, Theodoros A Tsiftsis, George K Karagiannidis. Optical wireless communication with heterodyne detection over turbulence channels with pointing errors[J]. J Lightwave Technol, 2009, 27(20): 4440-4445.

[18] 易湘, 岳鹏, 刘增基, 等. 基于分集接收技术的相干大气激光通信系统性能分析[J]. 光电子 激光, 2012, 23(9): 1743-1748.

    Yi Xiang, Yue Peng, Liu Zengji, et al.. Performance analysis of coherent atmospheric[J]. Jouranl of Optoelectronics Laser, 2012, 23(9): 1743-1748.

[19] 柯熙政, 刘妹. 湍流信道无线光通信中的分集接收技术[J]. 光学学报, 2015, 35(1): 0106005.

    Ke Xizheng, Liu Mei. Diversity reception technology over atmospheric turbulence channels in wireless optical communication[J]. Acta Optica Sinica, 2015, 35(1): 0106005.

[20] K Prabu, D Sriram Kumar, Reza Malekian. BER analysis of BPSK-SIM-based SISO and MIMO FSO systems in strong turbulence with pointing errors[J]. Optik, 2014, 125(21): 6413-6417.

[21] K Prabu, D Sriram Kumar. MIMO free-space optical communication employing coherent BPOLSK modulation in atmospheric optical turbulence channel with pointing errors[J]. Opt Commun, 2015, 343: 188-194.

[22] Ranran Wang, Ping Wang, Tian Cao, et al.. Average bit error rate performance analysis of subcarrier intensity modulated MRC and EGC FSO systems with dual branches over M distribution turbulence channels[J]. Optoelectronics Letters, 2015, 11(4): 281-285.

[23] Prabhmandeep Kaur, Virander Kumar Jain, Subrat Kar. Performance analysis of free space optical links using multi-input multi-output and aperture averaging in presence of turbulence and various weather conditions[J]. IET Commun, 2015, 9(8): 1104-1109.

[24] 冷蛟锋, 郝士琦, 瞿福琪, 等. 无线相干光通信空间分集接收合并技术[J]. 激光与光电子学进展, 2012, 49(1): 010602.

    Leng Jiaofeng, Hao Shiqi, Zhai Fuqi, et al.. Combination of spatial diversity coherent receivers for wireless optical communication[J]. Laser & Optoelectronics Progress, 2012, 49(1): 010602.

张慧颖, 李洪祚, 肖冬亚, 宁素焕. 大气湍流综合效应下空间分集接收性能研究[J]. 中国激光, 2016, 43(4): 0405002. Zhang Huiying, Li Hongzuo, Xiao Dongya, Ning Suhuan. Performance Analysis of Spatial-Diversity Reception over Combined Effects of Atmospheric Turbulence[J]. Chinese Journal of Lasers, 2016, 43(4): 0405002.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!