红外与毫米波学报, 2013, 32 (4): 366, 网络出版: 2013-08-28  

地表波谱比辐射率便携式测量的三种改进方法

Three improved methods for measuring spectral emissivity based on the FTIR spectrometer
作者单位
1 中国科学院地理科学与资源研究所 陆地水循环及地表过程重点实验室,北京100101
2 中国科学院研究生院北京,100101
摘要
针对便携式傅里叶变换红外光谱仪测量比辐射率的不确定性,提出了三种改进的波谱比辐射率测量方法.方法1和方法2借助于附加设备改变环境辐照度实现病态方程可解.方法3基于灰体假设,使用迭代求解获得最接近样品的真实温度的温度解,进而计算得到样品的比辐射率.使用温度测量和傅里叶光谱仪观测计算获得波谱比辐射率作为参考的比辐射率结果,对三种改进的方法进行对比和验证.结果表明,对于高比辐射率的石英板和纸板,三种改进方法的测量结果和参考值吻合较好.而对于低比辐射率的锈铁板和铝板,方法3最为接近参考比辐射率结果,而方法1,方法2由于需要过多的观测环节,存在一定的偏差.此三种方法将为改进便携式傅里叶变换红外光谱仪测量提供依据.
Abstract
To minimize the uncertainties related to the FTIR spectrometer, three improved methods were proposed to measure the spectral emissivity. For method 1 (M1) and method 2 (M2), an invented device was used to change the environment radiation which makes the ill conditioned equation solvable. Method 3 (M3) is based on the gray body assumption, and an iterative procedure was applied to derive the temperature of samples, then the spectral emissivity can be retrieved based on this temperature and the FTIR measurements. In order to validate these methods, the emissivity derived from the measured temperature was used as a reference. The results indicate that for the samples with high emissivity, such as quartz plates and cardboard, three improved methods have comparable accuracy; while for the samples with low emissivity, such as rusty iron plate and aluminum plate, the M3 is more reliable than the other two methods. M1 and M2 need to go through more procedures than M3, and this may lead to some deviation from the reality. Overall, three improved methods greatly improved the spectral emissivity measurements with FTIR spectrometer.
参考文献

[1] Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation [J]. Journal of Hydrology, 1998, 213(1-4): 198-212.

[2] Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs .1. Model formulation [J]. Journal of Climate, 1996, 9(4): 676-705.

[3] Friedl M A. Forward and inverse modeling of land surface energy balance using surface temperature measurements [J]. Remote Sensing of Environment, 2002, 79(2-3): 344-354.

[4] Becker F. The impact of spectral emissivity on the measurement of land surface-temperature from a satellite [J]. International Journal of Remote Sensing, 1987, 8(10): 1509-1522.

[5] Becker F, Li Z L. Surface temperature and emissivity at various scales: Definition, measurement and related problems [J]. Thermal Remote Sensing of the Energy and Water Balance over Vegetation in Conjunction with Other Sensors, 1993: 35-60.

[6] Becker F, Li Z L. Temperature-independent spectral indexes in thermal infrared bands [J]. Remote Sensing of Environment, 1990, 32(1): 17-33.

[7] Sobrino J A, Raissouni N, Li Z L. A comparative study of land surface emissivity retrieval from NOAA data [J]. Remote Sensing of Environment, 2001, 75(2): 256-266.

[8] Valor E, Caselles V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas [J]. Remote Sensing of Environment, 1996, 57(3): 167-184.

[9] Kahle A B, Madura D P, Soha J M. Middle infrared multispectral aircraft scanner data-analysis for geological applications [J]. Applied Optics, 1980, 19(14): 2279-2290.

[10] Watson K. Spectral ratio method for measuring emissivity [J]. Remote Sensing of Environment, 1992, 42(2): 113-116.

[11] Watson K. 2-temperature method for measuring emissivity [J]. Remote Sensing of Environment, 1992, 42(2): 117-121.

[12] Kealy P S, Hook S J. Separating temperature and emissivity in thermal infrared multispectral scanner data-implications for recovering land-surface temperatures [J]. Ieee Transactions on Geoscience and Remote Sensing, 1993, 31(6): 1155-1164.

[13] Li Z L, Petitcolin F, Zhang R H. A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data [J]. Science in China Series E-Technological Sciences, 2000, 43: 23-33.

[14] Cheng J, Liu Q H, Li X W, et al. Correlation-based temperature and emissivity separation algorithm [J]. Science in China Series D-Earth Sciences, 2008, 51(3): 357-369.

[15] Cheng J, Nie A X, Du Y M. The correlation based mid-infrared temperature and emissivity separation algorithm [J]. Spectroscopy and Spectral Analysis, 2009, 29(2): 340-345.

[16] ZHANG Ren-Hua, TIAN Guo-Liang. Measurements of surface emissivity under normal conditions[J]. Chinese Science Bulletin(张仁华,田国良. 常温比辐射率测量.科学通报),1981, 26(5): 297-300.

[17] ZHANG Ren-Hua, SUN Xiao-Min, ,ZHU Zhi-Lin, et al. Portable system to measure thermal band emissivity[P]. Patent No. 02237640.2 Granted by State Intellectual Property Office of P.R. China. (张仁华,孙晓敏,朱治林, 等. 一种便携式比辐射率测定仪,中国,专利号: 02237640.2)2003.04.16.

[18] LI Chun-Huai. Investigation of measurements of surface emissivity and temperature of terrestrial objects under usual conditions [J]. China Journal of Infrared Research(李春槐 常温地物比辐射率和表面温度测量方法的研究.红外研究), 1985,4(5): 361-369.

[19] TANG Xin-Zhai, ZHANG Ren-Hua, SU Hong-Bo, et al. The sealing-cavity method for determining emissivity and its deviation analysis[J]. Journal of remote sensing (唐新斋,张仁华,苏红波, 等. 比辐射率封闭法测定技术及误差分析.遥感学报), 2000,4(1): 1-7.

[20] Zhang R H. A Proposed Approach to Determine the Infrared Emissivities of Terrestrial Surfaces from Airborne or Spaceborne Platforms [J]. International Journal of Remote Sensing, 1988, 9(3): 591-595.

[21] Xiao Q, Liu Q H, Li X W, et al. A field measurement method of spectral emissivity and research on the feature of soil thermal infrared emissivity [J]. Journal of Infrared and Millimeter Waves, 2003, 22(5): 373-378.

[22] SHEN Bin, YAN Guang-Jian, Feng Xue, et al. A comparison study on the field measurement methods of thermal infrared spectral emissivity [J]. Journal of Beijing Normal University(Natural Science)( 沈斌,阎广建,冯雪, 等. 热红外比辐射率光谱野外测量方法的对比研究.北京师范大学学报(自然科学版)), 2007,43(3): 264-268.

[23] Tian J, Zhang R H, Su H B, et al. An automatic instrument to study the spatial scaling behavior of emissivity [J]. Sensors, 2008, 8(2): 800-816.

[24] Korb A R, Dybwad P, Wadsworth W, et al. Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity [J]. Applied Optics, 1996, 35(10): 1679-1692.

[25] Hook S J, Kahle A B. The micro Fourier Transform Interferometer (mu FTIR)-A new field spectrometer for acquisition of infrared data of natural surfaces [J]. Remote Sensing of Environment, 1996, 56(3): 172-181.

[26] ZHANG Ren-Hua. Remote sensing model and ground surface foundation[M], The Science Press: Beijing(张仁华. 定量热红外遥感模型及地面实验基础. 北京,科学出版社), 2009: 90-157.

[27] Barducci A., Pippi I. Temperature and emissivity retrieval from remotely sensed images using the ''grey body emissivity'' method[J]. Ieee T Geosci Remote. 1996, 34: 681-695.

杨永民, 张仁华, 苏红波, 田静, 陈少辉, 荣媛. 地表波谱比辐射率便携式测量的三种改进方法[J]. 红外与毫米波学报, 2013, 32(4): 366. YANG Yong-Min, ZHANG Ren-Hua, SU Hong-Bo, TIAN Jing, CHEN Shao-Hui, RONG Yuan. Three improved methods for measuring spectral emissivity based on the FTIR spectrometer[J]. Journal of Infrared and Millimeter Waves, 2013, 32(4): 366.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!