光电子快报(英文版), 2017, 13 (3): 192, Published Online: Sep. 13, 2018  

Organic light emitting devices employing non-doped structure

Author Affiliations
College of Physics and Information Engineering, Quanzhou Normal University, Quanzhou 362000, China
Abstract
A kind of efficient non-doped white organic light-emitting diodes (WOLEDs) were realized by using a bright blue-emitting layer of 4,4-bis(2,2-diphenylvinyl)-1,1-biphenyl (DPVBi) combining with red emitting ultrathin layer of [2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene]propane-dinitrile (DCM2) and green emitting ultrathin layer of 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H, 11H(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T) with different thicknesses of 0.05 nm, 0.10 nm and 0.20 nm. For comparing, a doped WOLED was also fabricated, in which C545T and DCM2 are codoped into DPVBi layer to provide blue, green and red emission for obtaining white emission. The maximum luminance and power efficiency of the doped WOLED are 5 765 cd/m2at 16 V and 5.23 lm/W at 5 V, respectively, and its Commission Internationale de l’Eclairage (CIE) coordinate changes from (0.393 7, 0.445 3) at 5 V to (0.300 7, 0.373 8) at 12 V. When the thickness of the ultrathin C545T layer in non-doped WLEDs increases, the emission luminance increases, but all non-doped devices are in the yellow white region. The device with 0.10-nm-thick C545T has a maximum efficiency of 15.23 cd/A at 8 V and a maximum power efficiency of 6.51 lm/W at 7 V, and its maximum luminance is 10 620 cd/m2at 16 V. CIE coordinates of non-doped WLEDs with C545T thickness of 0.05 nm, 0.10 nm and 0.20 nm are (0.447 3, 0.455 6), (0.464 0, 0.473 1) and (0.458 4, 0.470 0) at 8 V, respectively.
References

[1] Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li and J. X. Tang, Applied Physics Letters 100, 013308 (2012).

[2] J. H. Hwang, H. K. Choi, J. H. Moon, T. Y. Kim, J. W. Shin, C. W. Joo, J. H. Han, D. H. Cho, J. W. Huh, S. Y. Choi, J. I. Lee and H. Y. Chu, Applied Physics Letters 100, 133304 (2012).

[3] W. Ji, L. Zhang, K. Xu, W. Xie, H. Zhang, G. Liu and J. Yao, Organic Electronics 12, 2192 (2011).

[4] W. Ji, J. Zhao, Z. Sun and W. Xie, Organic Electronics 12, 1137 (2011).

[5] S. Su, E. Gonmori, H. Sasabe and J. Kido, Advanced Materials 20, 4189 (2008).

[6] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature 459, 234 (2009).

[7] Q. Huang, R. Meerheim, K. Fehse, G. Schwartz, S. Reineke, K. Walzer and K. Leo, SID Symposium Digest of Technical Papers 38, 1282 (2007).

[8] J. Kido, M. Kimura and K. Nagai, Science 267, 1332 (1995).

[9] R. S. Deshpande, V. Bulovic and S. R. Forrest, Applied Physics Letters 75, 888 (1999).

[10] B. W. D’Andrade, M. E. Thompson and S. R. Forrest, Advanced Materials 14, 147 (2002).

[11] C. W. Tang, S. A. Vanslyke and C. H. Chen, Journal of Applied Physics 65, 3610 (1989).

[12] G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata and Z. H. Kafafi, Applied Physics Letters 75, 766 (1999).

[13] Z. Y. Xie, L. S. Hung and S. T. Lee, Applied Physics Letters 79, 1048 (2001).

[14] T. Tsuji, S. Naka, H. Okada and H. Onnagawa, Applied Physics Letters 81, 3329 (2002).

[15] Xie W F, Wu Z J, Liu S Y and Lee S T, Journal of Physics D: Applied Physics 36, 2331 (2003).

[16] Xie W F, Liu S Y and Zhao Y, Journal of Physics D: Applied Physics 36, 1246 (2003).

[17] Yang H S, Zhao Y, Xie W F, Shi Y W, Hu W, Meng Y L, Hou J Y and Liu S Y, Semiconductor Science & Technology 21, 1447 (2006).

YANG Hui-shan, YANG Qi-zhen, WU Li-shuang. Organic light emitting devices employing non-doped structure[J]. 光电子快报(英文版), 2017, 13(3): 192.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!