激光与光电子学进展, 2015, 52 (8): 081401, 网络出版: 2015-07-23   

用于大气CO2浓度探测的高功率宽谱红外激光源

High Power Wide Spectrum Infrared Laser Source for Atmospheric CO2 Concentration Measurement
作者单位
湖北工程学院物理与电子信息工程学院, 湖北 孝感 432000
摘要
基于大气中CO2的超精细吸收光谱,利用超辐射发光二极管和掺铒光纤放大器来构建一种用于高精度大气CO2 浓度探测的宽谱红外激光源,其光谱范围远大于普通差分吸收激光雷达的光谱范围,能够实现宽谱探测技术的要求,而且不需要较高的锁频技术,避免了差分吸收激光雷达技术由于在on 波长处偏移引起的测量误差。实验结果表明,最终得到的宽谱红外激光源中心波长约为1584 nm,光谱有效范围为1564~1604 nm,输出光功率可达到2 W 以上,光纤放大器对该范围内光放大的最大增益可达34 dB 以上。该激光光源具有体积小、功率大、成本低和携带方便的优点,对实现利用宽谱红外激光雷达探测大气CO2浓度分布有一定的帮助。
Abstract
A wide spectrum infrared laser source can be designed by using a super luminescent light emitting diode (SLED) and an erbium doped fiber amplifier. This laser source can be used for detecting the atmosphere CO2 concentration with high precision, and this detecting technology is based on the ultra fine atmospheric CO2 absorption spectrum. The spectrum of SLED is much wider than that of the differential absorption lidar, and it has no use for high frequency locking technology. Also, this technology can avoid differential absorption lidar measurement error by on wavelength shift. The experimental results show that the laser center wavelength is 1584 nm, spectral range is from 1564 nm to 1604 nm, output power is 2 W, and the max gain of the fiber amplifier is 34 dB at this spectral range. This laser has advantages of small size, high power, low cost and easy to carry, and it can help for the development of atmosphere CO2 concentration detecting by the wide spectrum infrared lidar technology.
参考文献

[1] J Mao, S R Kawa. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight[J]. Appl Opt, 2004, 43(4): 914-927.

[2] S Kameyama, M Imaki, Y Hirano, et al.. Development of 1.6 mm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing[J]. Opt Lett, 2009, 34(10): 1513-1515.

[3] D Sakaizawa, C Nagasawa, T Nagai, et al.. Development of a 1.6 mm differential absorption lidar with a quasi-phasematching optical parametric oscillator and photon-counting detector for the vertical CO2 profile[J]. Appl Opt, 2009, 48(4): 748-757.

[4] A Amediek, A Fix, M Wirth, et al.. Development of an OPO system at 1.57 mm for integrated path DIAL measurement of atmospheric carbon dioxide[J]. Appl Phys B: Lasers and Optics, 2008, 92(2): 295-302.

[5] A Amediek, A Fix, G Ehret, et al.. Airborne lidar reflectance measurements at 1.57 mm in support of the A-SCOPE mission for atmospheric CO2[J]. Atmos Meas Tech, 2009, 2(2): 755-772.

[6] Wei Gong, Ge Han, Xin Ma, et al.. Multi-points scanning method for wavelength locking in CO2 differential absorption lidar[J]. Opt Commun, 2013, 305: 180-184.

[7] 李俊, 龚威, 毛飞跃, 等. 探测武汉上空大气气溶胶的双视场激光雷达[J]. 光学学报, 2013, 33(12): 1201001.

    Li Jun, Gong Wei, Mao Feiyue, et al.. Dual field of view lidar for observing atmospheric aerosols over Wuhan[J]. Acta Optica Sinica, 2013, 33(12): 1201001.

[8] 马昕, 林宏, 马盈盈, 等. 差分吸收大气CO2激光雷达的大气压力增宽修正算法[J]. 光学学报, 2012, 32(11): 17-22.

    Ma Xin, Lin Hong, Ma Yingying, et al.. Atmospheric pressure broadening correction algorithm of differential absorption atmospheric CO2 lidar[J]. Acta Optica Sinica, 2012, 32(11): 17-22.

[9] 曹念文, 颜鹏. 基于激光雷达探测的气溶胶分类方法研究[J]. 光学学报, 2014, 34(11): 1101003.

    Cao Nianwen, Yan Peng. Aerosol classifications method by lidar measurements[J]. Acta Optica Sinica, 2014, 34(11): 1101003.

[10] E M Georgieva, W S Heaps, E L Wilson. Differential radiometers using Fabry–Perot interferometric technique for remote sensing of greenhouse gases[J]. IEEE Transactions on Geoscience and Remote sensing, 2008, 46(10): 3115-3122.

[11] W S Heaps. Broadband lidar technique for precision CO2 measurement[J]. SPIE, 2008, 7111: 711102.

[12] 程杰, 傅焰峰, 龚威. 用于CO2探测的高功率1572 nm 可调谐光源[J]. 激光技术, 2012, 36(4): 463-466.

    Cheng Jie, Fu Yanfeng, Gong Wei. 1572 nm high power tunable laser source for atmospheric CO2 measurement[J]. Laser Technology, 2012, 36(4): 463-466.

[13] 郭良, 谌鸿伟,王泽锋, 等. 被动双包层光纤中包层光产生实验研究[J]. 激光与光电子学进展, 2014, 51(2): 020602.

    Guo Liang, Chen Hongwei, Wang Zefeng, et al.. Experimental study on the generation of cladding light in passive double-clad fiber[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020602.

[14] 秦风杰, 谭中伟, 宁提纲. 光源带宽对基于光纤色散的光学相关器影响的研究[J]. 光学学报, 2013, 33(10): 1006004.

    Qin Fengjie, Tan Zhongwei, Ning Tigang. Research of the influence of bandwidth of light source on the optical correlator based on fiber dispersion[J]. Acta Optica Sinica, 2013, 33(10): 1006004.

林宏, 何武光, 李卫中, 黄攀立. 用于大气CO2浓度探测的高功率宽谱红外激光源[J]. 激光与光电子学进展, 2015, 52(8): 081401. Lin Hong, He Wuguang, Li Weizhong, Huang Panli. High Power Wide Spectrum Infrared Laser Source for Atmospheric CO2 Concentration Measurement[J]. Laser & Optoelectronics Progress, 2015, 52(8): 081401.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!