激光技术, 2017, 41 (2): 275, 网络出版: 2017-03-29  

一种基于共轴干涉的相位物体定量成像技术

A technique of quantitative imaging for phase object based on in-line interfermetry
作者单位
华南师范大学 物理与电信工程学院 量子调控工程与材料实验室, 广州 510006
摘要
为了实现生物组织及相位光栅等透明相位物体的快速定量相位测量与成像, 基于共轴干涉及相衬干涉原理, 构建了一套相位物体定量相位快速测量与成像系统。分析了定量成像原理, 设计了相应的相位提取及恢复算法。通过拍摄单幅或两幅相衬图, 实现了相位光栅、水滴等小相位变化的相位样品的定量相位测量与成像。设计了相应的分区差分相位解包裹算法, 实现了相位值超过π的微透镜的定量相位测量与成像。结果表明, 通过该系统测量所得到的全息相位光栅的相位分布以及不同超声驱动电压下弱超声驻波光栅的相位振幅变化关系与其它方法所得的测量结果基本一致; 微透镜的实验测量厚度值与理论计算值相比, 绝对误差约为0.03μm。本系统具有一定的可行性和适应性, 在生物细胞和组织等透明相位物体的快速测量与成像方面有潜在的应用意义。
Abstract
In order to implement rapid quantitative phase measurement and imaging for transparent biological tissues, phase grating and other phase objects, based on the principle of in-line interferometry and phase contrast interferometry, an experimental system for fast quantitative measurement and imaging of phase objects was established. The principle of quantitative imaging was analyzed and the corresponding phase extraction and recovery procedures were designed. By shooting one or two phase contrast interferograms, the quantitative phase imagings for phase grating, water microdroplet and other phase objects with small phase variation were realized by the proposed method. A corresponding partition differential phase unwrapping algorithm was designed and the quantitative phase measurement and imaging of micro lens with phase value over π was achieved. The results show that the relationship between phase distribution of the obtained holographic phase grating measured by the system and phase amplitude variation of weak ultrasonic standing wave grating under different ultrasonic driving voltages is basically consistent with the results obtained from other methods. The experimental measurement of micro lens is compared with the theoretical value, and the absolute error is about 0.03μm. This system has certain feasibility, adaptability and potential applications on fast measurement and imaging of transparent phase objects such as biological cells and tissues.
参考文献

[1] RAJSHEKHAR G, BHADURI B, EDWARDS C, et al. Nanoscale topography and spatial light modulator characterization using wide-field quantitative phase imaging[J]. Optics Express, 2014, 22(3): 3432-3438.

[2] EDWARDS C, MCEOWN S J, ZHOU J, et al. In situ measurements of the axial expansion of palladium microdisks during hydrogen exposure using diffraction phase microscopy[J]. Optical Materials Express, 2014, 4(12): 2559-2564.

[3] LUE N, CHOI W, BADIZADEGAN K, et al. Confocal diffraction phase microscopy of live cells[J]. Optics Letters, 2008, 33(18): 2074-2076.

[4] LARIN K V, ELEDRISI M S, MOTAMEDI M, et al. Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects[J]. Diabetes Care, 2002, 25(12): 2263-2267.

[5] HUANG Z H, CHEN F C. A new method of scanning image for phase objects[J]. Proceedings of the SPIE, 2006, 6150: 1-5.

[6] FERCHER A F, DREXLER W, HITZENBERGER C K, et al. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 2003, 66(2): 239-303.

[7] FLUERARU C, SHERIF S. Optical coherence tomography technology and applications[J]. Medical Physics, 2009, 36(10): 147-148.

[8] MARQUET P, RAPPAZ B, MAGISTRETTI P J, et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy[J]. Optics Letters, 2005, 30(5): 468-470.

[9] MONEMAHGHDOUST Z, MONTFORT F, CUCHE E, et al. Full field vertical scanning in short coherence digital holographic microscope[J]. Optics Express, 2013, 21(10): 12643-12650.

[10] IKEDA T, POPESCU G, DASARI R R, et al. Hilbert phase microscopy for investigating fast dynamics in transparent systems[J]. Optics Letters, 2005, 30(9): 1165-1167.

[11] POPESCU G, IKEDA T, BEST C A, et al. Erythrocyte structure and dynamics quantified by Hilbert phase microscopy[J]. Journal of Biomedical Optics, 2005, 10(6): 1720-1722.

[12] XUE L, LAI J, WANG S, et al. Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells[J]. Biomedical Optics Express, 2011, 2(4): 987-995.

[13] POPESCU G, IKEDA T, DASARI R R, et al. Diffraction phase microscopy for quantifying cell structure and dynamics[J]. Optics Letters, 2006, 31(6): 775-777.

[14] PHAM H, BHADURI B, DING H, et al. Spectroscopic diffraction phase microscopy[J]. Optics Letters, 2012, 37(16): 3438-3440.

[15] GAO P, YAO B L, HARDER I, et al. Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement[J]. Optics Letters, 2011, 36(21): 4305-4307.

[16] LUE N, CHOI W, POPESCU G, et al. Quantitative phase imaging of live cells using fast Fourier phase microscopy[J]. Applied Optics, 2007, 46(10): 1836-1842.

[17] FRHAPTER S, JESACHER A, BERNET S, et al. Spiral phase contrast imaging in microscopy[J]. Optics Express, 2005, 13(3): 689-694.

[18] WANG Z, MILLET L, MIR M, et al. Spatial light interference microscopy (SLIM)[J]. Optics Express, 2011, 19(2): 1016-1026.

[19] DING H, POPESCU G. Instantaneous spatial light interference microscopy[J]. Optics Express, 2010, 18(2): 1569-1575.

[20] GAO P, HARDER I, NERCISSIAN V, et al. Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy[J]. Optics Letters, 2010, 35(5): 712-714.

[21] GAO P, YAO B L, HARDER I, et al. Parallel two-step phase-shifting digital holograph microscopy based on a grating pair[J]. Journal of the Optical Society of America, 2011, A28(3): 434-440.

[22] GAO P, YAO B L, MIN J W, et al. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters[J]. Optics Express, 2011, 19(3): 1930-1935.

[23] BORN M, WOLF E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[M]. 3rd ed. Cambridge,UK: Cambridge University Press, 1999: 472-476.

[24] BELEGGIA M. A formula for the image intensity of phase objects in Zernike mode[J]. Ultramicroscopy, 2008, 108(9): 953-958.

[25] YANG H, HUANG Z H, LIU Y. Analysis of phase-contrast method with background light[J]. Laser Technology, 2011, 35(5): 696-698 (in Chinese).

[26] HUANG M N, HUANG Z H, CAI W X, et al. Manufacturing method of a phase plate and its application in phase-contrast experiments[J]. Laser Technology, 2010, 34(1): 81-84 (in Chinese).

[27] PAN M Y, ZENH Y Zh, HUANG Z H. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis[J]. Review of Scientific Instruments, 2014, 85(9): 093112.

[28] GAO P, YAO B L, HAN J, et al. Phase reconstruction from three interferograms based on integral of phase gradient[J]. Journal of Modern Optics, 2008, 55(14): 2233-2242.

[29] XIA H T, GUO R X, FAN Z B, et al. Non-invasive mechanical measurement for transparent objects by digital holographic interferometry based on iterative least-squares phase unwrapping[J]. Experimental Mechanics, 2012, 52(4): 439-445.

吴舒哲, 唐嘉, 熊亮, 黄佐华. 一种基于共轴干涉的相位物体定量成像技术[J]. 激光技术, 2017, 41(2): 275. WU Shuzhe, TANG Jia, XIONG Liang, HUANG Zuohua. A technique of quantitative imaging for phase object based on in-line interfermetry[J]. Laser Technology, 2017, 41(2): 275.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!