光电工程, 2020, 47 (4): 190390, 网络出版: 2020-05-27  

环路剪切干涉术测量附面层密度场

Measurement of flow density field by cyclic radial shearing interferometer
作者单位
1 四川大学电子信息学院,四川 成都 610065
2 中国空气动力研究与发展中心高速所,四川 绵阳 621000
摘要
在附面层测量中,需对微小尺度的高速气流变化场进行瞬态测量。数字化的干涉测量方法能定量地解算出流场的密度场,是一种重要的应用。介绍了一种共路干涉的环路剪切干涉方法,对震动不敏感,无需参考面,适合附面层测量使用。采用基于空间位相调制的快速算法,配以脉冲激光器和同步控制系统,可实时地对扰流密度场进行定量测量。该系统采集分辨率200 pixels × 200 pixels,采集频率可达每秒1000帧以上。系统的波前重构方法经过计算机仿真,检测结果优于1/20λ。在0.6 m风洞对圆柱体尾部附面层进行测量试验,结果表明,在一定风速下,该系统能抑制振动干扰,显著地区分出圆柱体尾部扰流信号和振动噪声,具有良好的应用前景。
Abstract
Transient measurements of high-speed airflow field are needed in the measurement of boundary layer. Digital interferometry can measure flow field quantitatively to obtain density information, which is very necessary in flow field measurement. In this paper, a common-path shearing interferometry method is introduced. It is insensitive to vibration and does not need a reference plane. It is suitable for flow field measurement. A fast algorithm based on spatial phase modulation, coupled with a pulse laser and a synchronous control system, is used to measure the disturbance density field quantitatively in real time. The acquisition resolution of the system is 200 pixels × 200 pixels, and the acquisition frequency can reach more than 1000 frames per second. The wavefront reconstruction method of the system has been simulated by computer, and the detection result is better than 1/20λ. The experimental results in a 0.6 m wind tunnel show that the system can restrain the vibration interference and distinguish the disturbance signal and the vibration noise remarkably. It has good application prospects.
参考文献

[1] 俞建阳. DBD等离子体诱导涡结构控制附面层流动研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Yu J Y. Flow control with the vortex induced by DBD plasma in boundary layer flow[D]. Harbin: Harbin University of Technology, 2017.

[2] 李强, 江涛, 陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J]. 航空学报, 2019, 40(8): 122740.

    Li Q, Jiang T, Chen S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122740.

[3] 卢晓芬, 张天序, 洪汉玉. 气动光学效应像素偏移图像校正方法研究[J]. 红外与激光工程, 2007, 36(5): 758–761.

    Lu X F, Zhang T X, Hong H Y. Image correction method with pixel deviation caused by aero-optics effects[J]. Infrared and Laser Engineering, 2007, 36(5): 758–761.

[4] 杨富荣, 陈力, 闫博, 等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J]. 实验流体力学, 2018, 32(3): 82–86.

    Yang F R, Chen L, Yan B, et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 82–86.

[5] Ling T, Liu D, Yang Y Y, et al. Off-axis cyclic radial shearing interferometer for measurement of centrally blocked transient wavefront[J]. Optics Letters, 2013, 38(14): 2493–2495.

[6] 罗积军, 侯素霞, 徐军, 等. 环路径向剪切干涉测量激光束波前畸变的研究[C]//第九届全国光电技术学术交流会论文集. 北京: 中国宇航学会, 中国航空学会, 中国兵工学会, 中国光学学会, 中国电子学会, 2010.

    Luo J J, Hou S X, Xu J, et al. Study of measuring laser beam wave-front based on cyclic radial shearing interferometer[C]//Proceedings of National Symposium on Optoelectronic Technology. Beijing: Chinese Society of Astronautics, Chinese Society of Aeronautics and Astronautics, China Ordnance Society, Chinese Optical Society, Chinese Institute of Electronics, 2010.

[7] Couch L L, Kalin D A, McNeal T. Experimental investigation of image degradation created by a high-velocity flow field[J]. Proceedings of SPIE, 1991, 1486: 417–423.

[8] Griffin D W. Phase-shifting shearing interferometer[J]. Optics Letters, 2001, 26(3): 140–141.

[9] Lam B, Guo C L. Complete characterization of ultrashort optical pulses with a phase-shifting wedged reversal shearing interferometer[J]. Light: Science & Applications, 2018, 7: 30.

[10] 杨甬英, 刘东, 王道档, 等. 动态变化场的高速高精度实时干涉检测[J]. 红外与激光工程, 2008, 37(5): 757–760.

    Yang Y Y, Liu D, Wang D D, et al. Real-time interferometry with high speed and precision for transient flow field and its applications[J]. Infrared and Laser Engineering, 2008, 37(5): 757–760.

[11] 凌曈. 基于多波前剪切干涉与光学层析技术三维折射率场重构研究[D]. 杭州: 浙江大学, 2016.

    Ling T. Reconstruction of three-dimensional refractive index field based on multi-wave shearing interferometry and optical tomography[D]. Hangzhou: Zhejiang University, 2016.

[12] Gu L Y, Liu L, Hu S Y, et al. Polarization phase-shifting lateral shearing interferometer with two polarization beam splitter plates[J]. Optical Review, 2017, 24(4): 600–604.

[13] Medhi B, Hegde G M, Gorthi S S. Improved quantitative visualization of hypervelocity flow through wavefront estimation based on shadow casting of sinusoidal gratings[J]. Applied Optics, 2016, 55(22): 6060–6071.

[14] 章辰. 偏振相移径向剪切干涉仪及流场动态测量研究[D]. 成都: 四川大学, 2018.

    Zhang C. A study of polarization phase shifting radial shearing interferometry and dynamic measurement in flow field[D]. Chengdu: Sichuan University, 2018.

[15] Thornton D E, Spencer M F, Perram G P. Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry with comparisons to the self-referencing interferometer[J]. Applied Optics, 2019, 58(5): A179–A189.

[16] Tian C, Chen X F, Liu S C. Modal wavefront reconstruction in radial shearing interferometry with general aperture shapes[J]. Optics Express, 2016, 24(4): 3572–3583.

[17] Zhang C, Li D H, Li M M, et al. Wavefront reconstruction algorithm based on interpolation coefficients for radial shearing interferometry[J]. Proceedings of SPIE, 2016, 10155: 1015539.

[18] Wang Z Y, Wang S, Yang P, et al. Multiple-wave radial shearing interferometer based on a Fresnel zone plate[J]. Optics Express, 2018, 26(26): 34928–34939.

[19] Padghan P P, Alti K M. Quantification of nanoscale deformations using electronic speckle pattern interferometer[J]. Optics & Laser Technology, 2018, 107: 72–79.

[20] Dai F Z, Zheng Y Z, Bu Y, et al. Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry[J]. Applied Optics, 2017, 56(1): 61–68.

[21] Sessa V, Xie Z T, Herring S. Turbulence and dispersion below and above the interface of the internal and the external boundary layers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182: 189–201.

蒲泓宇, 李大海, 罗鹏, 章辰. 环路剪切干涉术测量附面层密度场[J]. 光电工程, 2020, 47(4): 190390. Pu Hongyu, Li Dahai, Luo Peng, Zhang Chen. Measurement of flow density field by cyclic radial shearing interferometer[J]. Opto-Electronic Engineering, 2020, 47(4): 190390.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!