光学 精密工程, 2019, 27 (11): 2289, 网络出版: 2020-01-07   

全海深大视场超高清光学系统设计

Design of deep-sea optical imaging system with wide field of view and ultra-high resolution
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院 深海科学与工程研究所, 海南 三亚 572000
3 中国科学院大学, 北京 100049
摘要
为满足我国深海成像设备需求, 针对水下光学像差特点完成了全海深大视场光学成像系统设计。根据深海系统使用环境, 对光学参数与结构形式进行了分析与探讨; 采用常用玻璃及球面透镜设计, 完成了小型化低成本高性能的光学设计实例; 通过控制光线角度来提高光学系统能量利用率。选用YAG透明陶瓷为抗压窗口材料, 通过有限元力学分析仿真获得形变与抗压阈值。通过ANSYS软件分析窗口与支撑结构, 设计满足全海深11 000 m使用环境(120 MPa)要求。光学系统的工作波段为410~630 nm,视场角达80°, 相对孔径为1/2.8, 全视场MTF>0.3(@91 lp/mm)。该系统成像质量及光学窗口抗压性均满足深海成像科考需求。
Abstract
In order to meet the needs of deep-sea imaging devices in China, a whole deep-sea wide-field-of-view optical imaging system was designed based on the aberration characteristics of an underwater optical system. According to the operating environment of the deep-sea system, the optical parameters and structural forms were analyzed. A sample optical design characterized by miniaturization, low cost, and high performance was completed using common glass and spherical lens. The energy utilization of the optical system was improved by controlling the light angle. With YAG transparent ceramics as a material for anti-compression window, the deformation and anti-compression thresholds were obtained by finite-element mechanical analysis and simulation. Analysis of the window and supporting structure using ANSYS software suggests that the design met the requirements for use in 11,000 m whole deep-sea environment (110 MPa). The operating band of the optical system is 410~630 nm, the field-of-view angle reaches 80°, the relative aperture reaches 1/2.8, and the MTF of the full field-of-view>0.3 (@91 lp/mm). The imaging quality of the system and the anti-compression performance of the optical window meet the needs of deep-sea imaging for scientific investigation.
参考文献

[1] DAVID T. The Deep-sea Floor: an Overview [D]. Ecosystems of the deep Ocean. Amsterdam: Elsevier, 2003, V(28): 5-39.

[2] HUIBERS P D T. Models for the wavelength dependence of the index of refraction of water[J]. Applied Optics, 1997, 36(16): 3785-3787.

[3] AUSTIN R W, HALIKAS G. The index of refraction of seawater[R]. Defense Technical Information Center, 1976.

[4] DAN S. A focal viewport optics for underwater imaging[C]. Current Developments in Lens Design and Optical Engineering XV, SPIE, 2014,9192: 91920P-1-13

[5] LAIKIN M. Design of an in-water corrector system[J]. Applied Optics, 2002, 41(19): 3777-3780.

[6] 谢正茂, 董晓娜, 陈良益, 等. 大视场大相对孔径水下专用摄影物镜的设计[J]. 光子学报, 2009, 38(4): 891-895.

    XIE ZH M, DONG X N, CHENG L Y, et al.. Design for special underwater photography objective lens with wide angle and large relative aperture[J]. Acta Photonica Sinica, 2009, 38(4): 891-895.(in Chinese)

[7] 朱彩霞, 闫亚东, 沈满德, 等. 基于水下反恐的微光成像系统[J]. 应用光学, 2008,29(2): 220-224.

    ZHU C X, YAN Y D, SHEN M D, et al.. Low-light-level imaging system for underwater anti-terrorism[J]. Journal of Applied Optics, 2008, 29(2): 220-224.(in Chinese)

[8] 杜柯, 程雪岷, 郝群. 深海探测变焦光学系统的设计[J]. 激光与光电子学进展, 2013, 50(9): 147-153.

    DU K, CHENG X M, HAO Q. Design of optical zoom system for deep-sea detection[J]. Laser & Optoelectronics Progress, 2013, 50(9): 147-153.(in Chinese)

[9] 孙传东, 李驰, 张建华, 等. 水下成像镜头的光学设计[J]. 光学 精密工程, 1998,6(5): 5-11.

    SUN CH D, LI CH, ZHANG J H, et al.. Optical design of the lens for unerwater imaging system[J]. Opt. Precision Eng., 1998, 6(5): 5-11.(in Chinese)

[10] 曹易辉. 水下微光成像镜头的设计和研究[D]. 西安: 西安工业大学, 2013.

    CAO Y H. Design of Underwater Low Light Imaging System[D]. Xi′an: Xi′an Technological University, 2013.(in Chinese)

[11] 范之国, 宋强, 代晴晴, 等. 全局参数估计的水下目标偏振复原方法[J]. 光学 精密工程, 2018, 26(7): 1621-1632.

    FAN Z G, SONG Q, DAI Q Q, et al.. Underwater target polarization recovery method based on global parameter estimation[J]. Opt. Precision Eng., 2018, 26(7): 1621-1632.(in Chinese)

[12] 王一斌, 尹诗白, 吕卓纹. 自适应背景光估计与非局部先验的水下图像复原[J]. 光学 精密工程, 2019, 27(2): 499-510.

    WANG Y B, YIN SH B, LU ZH W. Underwater image restoration with adaptive background light estimation and non-local prior[J]. Opt. Precision Eng., 2019, 27(2): 499-510.(in Chinese)

[13] 全向前, 陈祥子, 全永前, 等. 深海光学照明与成像系统分析及进展[J]. 中国光学, 2018,11(2): 153-165.

    QUAN X Q, CHEN X Z, QUAN Y Q, et al.. Analysis and research progress of deep-sea optical illumination and imaging system[J]. Chinese Optics, 2018,11(2): 153-165.(in Chinese)

[14] 刘庆省, 郭金家, 杨德旺, 等. 小型高灵敏度水下拉曼光谱系统[J]. 光学 精密工程, 2018, 26(1): 8-13.

    LIU Q X, GUO J J, YANG D W, et al.. A compact underwater Raman spectroscopy system with high sensitivity[J]. Opt. Precision Eng., 2018, 26(1): 8-13.(in Chinese)

[15] 吴厚德, 侯昱辰, 许文海, 等. 水下自主航行器微光照相机驱动系统设计[J]. 光学 精密工程, 2018,26(10): 2605-2613.

    WU H D, HOU Y C, XU W H, et al.. Design of driving system for AUV low-light level camera[J]. Opt. Precision Eng., 2018, 26(10): 2605-2613.(in Chinese)

[16] 沈凌敏.水下摄像系统的设计与研究 [D]. 北京: 中国科学院, 2009.

    SHEN L M. Underwater Photoelectrical Imaging Design and Reaserch[D].Beijing: Graduate University of the Chinese Academy of Sciences, 2009. (in Chinese)

[17] 许尧. 几种特殊光学系统的设计及其有限元分析[D]. 北京: 北京理工大学, 2015.

    XU Y. The Design of Several Special Optical Dystems and Finite Element Analysis[D]. Beijing: Beijing Institute of Technology, 2015.(in Chinese)

姜洋, 全向前, 杜杰, 邢妍, 吕深圳, 孙强. 全海深大视场超高清光学系统设计[J]. 光学 精密工程, 2019, 27(11): 2289. JIANG Yang, QUAN Xiang-qian, DU Jie, XING Yan, L Shen-zhen, SUN Qiang. Design of deep-sea optical imaging system with wide field of view and ultra-high resolution[J]. Optics and Precision Engineering, 2019, 27(11): 2289.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!